
AWARD NUMBER:   W81XWH-16-1-0130 

TITLE:    Single-Cell Dissection of Human Pancreatic Islet Dysfunction in Diabetes 

PRINCIPAL INVESTIGATOR:    Michael L. Stitzel, Ph.D. 

RECIPIENT:  The Jackson Laboratory
Bar Harbor, ME 04609 

REPORT DATE:  June 2017 

TYPE OF REPORT:  Annual 

PREPARED FOR:  U.S. Army Medical Research and Materiel Command 
                               Fort Detrick, Maryland  21702-5012  

DISTRIBUTION STATEMENT:  Approved for public release; distribution is unlimited.

The views, opinions and/or findings contained in this report are those of the author(s) and should not be 
construed as an official Department of the Army position, policy or decision unless so designated by other 
documentation. 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE
June 2017 

2. REPORT TYPE
Annual 

3. DATES COVERED
 1 Jun 2016 - 31 May 2017 

4. TITLE AND SUBTITLE

 Single-Cell Dissection of Human Pancreatic Islet 
Dysfunction in Diabetes 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 
W81XWH-16-1-0130 
5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S)
Michael L. Stitzel, Ph.D. 
 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

E-Mail:  Michael.Stitzel@jax.org 
 

5f. WORK UNIT NUMBER

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

 The Jackson   Laboratory for 
Genomic Medicine 
10 Discovery Drive 
Bar Harbor, ME 04609

 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

U.S. Army Medical Research and Materiel Command 
 Fort Detrick, Maryland  21702-5012 11. SPONSOR/MONITOR’S REPORT

NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited 

 13. SUPPLEMENTARY NOTES

14. ABSTRACT
Islets are composed of ≥5 endocrine cell types that perform complementary functions to 
maintain proper glucose homeostasis.  This cellular heterogeneity impedes our ability to 
understand the precise transcriptional repertoire and regulatory landscape of each cell type 
and to determine how these programs in each cell type are perturbed in type 2 diabetes 
(T2D).  The overarching goal of this project is to determine, with single cell resolution, 
changes in cellular composition and cell-specific gene expression programs elicited by T2D 
in human islets using innovative single cell transcriptomic (scRNA-seq; Aim 1) and 
epigenomic (scATAC-seq; Aim 2) technologies. 

15. SUBJECT TERMS
Single cell; epigenome; scATAC-seq; scRNA-seq; transcriptome; human islet; alpha; beta; 
delta; pancreatic polypeptide (PP); gamma; epsilon; endocrine 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT 

18. NUMBER
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON
USAMRMC 

a. REPORT

    Unclassified 

b. ABSTRACT

    Unclassified 

c. THIS PAGE

    Unclassified 
    Unclassified 

19b. TELEPHONE NUMBER (include area 
code)

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18

55



TABLE OF CONTENTS 

Page No. 

1. Introduction 4 

2. Keywords 4 

3. Accomplishments 4 

4. Impact 8 

5. Changes/Problems 9 

6. Products 10 

7. Participants & Other Collaborating Organizations 11 

8. Special Reporting Requirements 16 

9. Appendices 16 



1. INTRODUCTION:

Islets are composed of ≥5 endocrine cell types that perform complementary functions to maintain proper 
glucose homeostasis.  This cellular heterogeneity impedes our ability to understand the precise transcriptional 
repertoire and regulatory landscape of each cell type and to determine how these programs in each cell type are 
perturbed in type 2 diabetes (T2D).  The overarching goal of this project is to determine, with single cell 
resolution, changes in cellular composition and cell-specific gene expression programs elicited by T2D in 
human islets using innovative single cell transcriptomic (scRNA-seq; Aim 1) and epigenomic (scATAC-seq; 
Aim 2) technologies. 

2. KEYWORDS:

Single cell; epigenome; scATAC-seq; scRNA-seq; transcriptome; human islet; alpha; beta; delta; pancreatic 
polypeptide (PP); gamma; epsilon; endocrine 

3. ACCOMPLISHMENTS:

What were the major goals of the project? 

Major goals of the project: 
Aim 1: Islet single cell transcriptomes 
1a: Non-diabetic (ND) islet single cell transcriptomes 
Milestone (12 months): ~1000 single cell transcriptome profiles from 5 ND islets 
Achieved:  4806 single cell transcriptome profiles from 1 ND islet (~500% of cells, 20% of samples to date) 

1b: Type 2 diabetic (T2D) islet single cell transcriptomes 
Milestone (12 months): ~1000 single cell transcriptomes from 5 T2D islets  
Achieved: ~4192 single cell transcriptome profiles from 1 T2D islet (~400% of cells, 20% of samples to date) 

1c: Determine cell type transcriptome signatures in ND and T2D samples 
Milestone (anticipated, month 15):  Comprehensive analysis of islet transcriptomes and identification of cell 
type-specific transcriptomes / “signature” genes 
Achieved:  Identification of cell type-specific transcriptomes and signature genes from two samples 

1d: Identify cell type-specific expression differences between ND and T2D samples 
Milestone (anticipated, month 15): Identification of cell type-specific differential expression in T2D vs. ND 
samples 

Aim 2: Islet single cell epigenomes 
2a: Non-diabetic (ND) islet single cell epigenomes 
Milestone (12 months): ~1000 single cell epigenome (scATAC-seq) profiles 
Achieved: ~400 single cell epigenome profiles (40%) 

2b: Type 2 diabetic (T2D) islet single cell epigenomes 
Milestone (12 months): ~1000 single cell epigenome (scATAC-seq) profiles 
Achieved: ~400 single cell epigenome profiles (40%) 

2c: Determine cell type epigenome signatures in ND and T2D samples 
Milestone (anticipated, 15 months): Comprehensive analysis of islet epigenomes and identification of cell type-
specific regulatory element use/epigenome signatures 
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Achieved to date: Established and evaluated scATAC-seq analysis pipelines; QC and unsupervised clustering 
analyses of 1 ND islet 

2d: Identify cell type-specific epigenomic differences between ND and T2D samples 
Milestone (anticipated. 15 months): Identification of cell type-specific differences in regulatory element 
use/epigenome signatures in T2D and ND states 
Achieved to date: Identification of aggregate single cell ATAC-seq regulatory element signatures from 1 ND 
islet 

What was accomplished under these goals? 

1) Major activities: We have completed
single cell transcriptome and epigenome 
profiling of 1 T2D and 1 matched ND 
islet to date.  We have effectively 
implemented analysis pipelines for both 
islet single cell transcriptome and 
epigenome analyses.  

2) Specific objectives: Specific objectives
in this reporting period were (1) to 
establish and test analytical pipelines for 
single cell transcriptome and epigenome 
analysis and (2) complete single cell 
profiling of pancreatic islets from 5 non-
diabetic and 5 type 2 diabetic (T2D) 
donors. 

3) Significant results: We have 
completed single cell transcriptome 
profiling of 4806 cells from one ND islet 
and 4192 cells from one T2D islet using 
the 10X Genomics platform.  As shown 
in Figures 1 and 2, we have identified all major endocrine cell populations in both ND and T2D samples. 
Importantly, the ability to profile thousands of single cell transcriptomes per donor for the same cost as the 
hundreds of cells per donor originally proposed is allowing us to determine more rigorously (1) if there are 
subpopulations of endocrine cells in ND And T2D islets, (2) if new, rarer populations of cells such as “de-
differentiated beta cells” are appearing in T2D samples, and (3) if the relative known and novel cell 
(sub)populations are changing in proportion between ND and T2D islets. Analyses of our single cell 
transcriptome data are limited to n=1 each for ND and T2D states, so we refrain thus far from making broad 
conclusions.  However, our results so far suggest the following: 

• Endocrine cells in ND islets cluster by cell type (alpha, beta, delta, gamma/PP).  We neither find
evidence of endocrine cell type subpopulations nor of novel populations  in this ND islet (Fig. 1).

• T2D islets contain discernible alpha and beta cell subpopulations (Fig. 2A, Beta 1,2 and Alphas 1-3).
We are still in the process of analyzing these data, but our preliminary differential analyses of Beta 1
and Beta 2 subpopulations (Fig. 2A-D) indicate that Beta 2 expresses similar levels of INS as Beta 1
(Fig. 2B). However, Beta 2 exhibit significantly lower MAFA (Fig. 2C), NKX6-1 (Fig. 2D), and PDX1,
MAFB, and NEUROD1 (not shown) expression, consistent with previous targeted observations by
Roland Stein’s group1.  Moreover, we detect significant induction of genes modulating stress responses
such as amyloid responses, processing, and degradation (APLP2, APP, ITMB2) inflammation (CTSA,
RBP4), autophagy (TMEM59, LAMP1, LAMP2, ATP6AP2), and oxidative and endoplasmic reticulum
stress responses (PRDX4, ERP29) in this same population. Finally, we identified differential regulation

Figure 1. Single cell transcriptomes of ND islet cluster into major cell 
types with little evidence for subpopulations. (Left): t-SNE dimensional 
reduction analysis of single cell transcriptome similarity. Cells clustered 
into major endocrine and exocrine cell types as labeled.  (Right): Violin 
plots of marker gene expression for delta (SST), gamma (PPY), beta (INS), 
and alpha (GCG) cells.  Note: color codes in right panel do not correlate to 
those for cell clusters on the left. 
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of T2D GWAS effector 
genes ZFAND6, 
CDKN2A, and KCNK17 
between these two beta 
cell populations. We are 
continuing these 
analyses through the 
next reporting period 
and will extend them to 
identify the genes and 
pathways distinguishing 
the three alpha cell 
subpopulations. Most 
importantly, we will 
complete these analyses 
in additional islet 
samples to identify 
robust and reproducible 
T2D cell type-specific 
signatures among 
multiple individuals. 

Epigenome profiling of single 
cells using ATAC-seq to 
identify open chromatin sites 
has been completed for one 
T2D and one ND individual. 
As shown in Fig. 3, aggregate 
scATAC-seq profiles from 165 
single cells identify many of 
the consensus sites identified in 
bulk islet samples (“Islet 
ATAC-seq”)  
(gray boxes).  
Importantly, 
these include 
islet-specific 
sites (compare 
GM12878 
ATAC-seq to 
“Islet ATAC-
seq” and 
“Aggregate 
scATAC-seq” 
plots) at both 
transcription 
start sites and distal regulatory elements, suggesting our profiling approach is capturing the full range of 
regulatory element classes (e.g., promoter, enhancer, insulator) in islets. The sparse nature of the scATAC-seq 
profiles in each specific single cell has made assigning each single cell epigenome profile to a specific cell type 
(e.g., alpha, beta, delta, PP/gamma) challenging. We believe part of this difficulty is due to technical issues of 
over- or under-transposition of samples.  To address this technical challenge, we are completing serial dilution 
experiments to determine optimal transposase concentrations that will yield robust scATAC-seq profiles for 

Figure 2. Single cell transcriptomes reveal putative alpha and beta cell 
subpopulations in T2D islets. (A) t-SNE analysis of 4192 single cell transcriptomes 
from one T2D islet donor. (B-D) Beta 2 subpopulation exhibits similar high levels of 
INS expression (B, pink/red dots) but significantly lower MAFA (C) and NKX6-1 (D) 
expression than Beta 1. 

Figure 3. Aggregation of single cell ATAC-seq profiles largely recapitulates the epigenomic landscape 
identified in bulk islet samples. UCSC Genome Browser view of the KCNJ11/ABCC8 genes encoding the 
sulfonylurea receptor subunits.  Gray boxes highlight open chromatin sites consistently identified by bulk islet 
and aggregated single cell  (n=165 cells) ATAC-seq profiles. Several of these sites are islet-specific and not 
observed in a lymphoblastoid cell line (GM12878). Gene models (RefSeq Genes) are shown at the bottom. 
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each single cell. We do not anticipate that this is an insurmountable technical hurdle. Pending the results of 
these experiments, however, we may explore an alternative approach to transpose multiple pools of tens to 
hundreds of FACS-enriched alpha, beta, delta, and gamma cells each to generate more robust cell type-specific 
epigenome profiles from ND and T2D islet donors.  This alternative approach would only be implemented after 
consultation with and approval by Dr. Thakar, Program Officer on this Discovery Award, as it would represent 
a change in the scope of the project, namely changing the epigenome profiling assay resolution of from single 
cell to pools of a specific enriched cell type. 

Stated goals not met: In this reporting period, we have experienced challenges in obtaining the number of islets 
originally proposed. This was due to less frequent availability of T2D islets (5 offers total between August 2016 
and May 2017) than anticipated based on frequency in the previous two years of tracking (~1 offer per month). 
Moreover, for 3 T2D offers, the islet preparation at ProdoLabs or IIDP failed to yield high quality islets. To 
address this challenge in obtaining T2D islets, we discussed and implemented an alternative islet subscription 
strategy with IIDP to maximize our chances to obtain T2D islets. Since its implementation in May, we have 
received 3 targeted offers, for which one donor met our inclusion criteria. We have identified and profiled an 
appropriately matched non-diabetic donor. As described in Major activities and Significant results above, our 
experimental and analytical pipelines are robust and generating high quality profiles, so we are equipped and 
prepared to complete expedited analyses of the islet datasets in months 13-18 .  Given the current rate of 
obtaining islets, we anticipate we can obtain islets from 3-4 T2D donors from the same number of matched ND 
donors and analyze them within the upcoming 5-6 months. If we experience another lag in T2D islet availability 
in the upcoming 1-2 months, we will seek alternative sources of islets, including the University of Alberta 
center directed by Dr. Patrick MacDonald. 

What opportunities for training and professional development has the project provided?   

How were the results disseminated to communities of interest?   

If there is nothing significant to report during this reporting period, state “Nothing to Report.” 

What do you plan to do during the next reporting period to accomplish the goals?   

To deal with the lag in obtaining T2D islets due to lower than anticipated availability of T2D islets and isolation 
failures at the IIDP/ProdoLab centers, (noted in 3.3 above), we have specifically discussed and implemented a 
strategy with the IIDP coordinating team to maximize targeted offers for T2D islets and match non-diabetic 
donor islets using the Open offers. These cells are still acquired under the same protocols used by the 
IIDP/ProdoLabs and approved by OHRP. After implementing this change, we have obtained a well-matched 
T2D-ND set of donors in the span of 1 month.  Moreover, our adaptation of the 10X Genomics platform for 
single cell RNA-sequencing allows us to sample ~4000-6000 single cell transcriptomes per sample, which will 
maximize our ability to detect cellular subpopulations and determine quantitative differences between these cell 
types/subpopulations within a given sample (as shown in Fig. 2) and between T2D and ND samples. 

1c: Determine cell type transcriptome signatures in ND and T2D samples 
Milestone (anticipated, month 15):  Comprehensive analysis of islet transcriptomes and identification of cell 
type-specific transcriptomes / “signature” genes 
Plans moving forward: We believe that cell type-specific transcriptomes will not differ substantially between 
ND donors, and therefore anticipate that we have already identified the cell type-specific transcriptomes of 
healthy islets. However, based on our initial T2D islet results, we could conceivably identify different 

Nothing to Report 

Nothing to Report 
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subpopulations among different T2D donors. With the updated islet procurement strategy, we anticipate to be 
able to obtain and sequence the remaining four T2D donor islets by month 15-16.  Analysis pipelines are in 
place and robust, so we expect that analyzing the additional data should take no longer than 2-3 weeks, which 
should keep us within our original plans to summarize and write up study results by month 18. 

1d: Identify cell type-specific expression differences between ND and T2D samples 
Milestone (anticipated, month 15): Identification of cell type-specific differential expression in T2D vs. ND 
samples 
Plans moving forward: As noted above, we anticipate obtaining and profiling all needed T2D and ND samples 
by months 16 and 17, respectively. Differential analyses between specific cell types (e.g. T2D delta vs. ND 
delta) should take approximately 1-2 weeks additional time.  

2c: Determine cell type epigenome signatures in ND and T2D samples 
Milestone (anticipated, 15 months): Comprehensive analysis of islet epigenomes and identification of cell type-
specific regulatory element use/epigenome signatures 
Plans moving forward: As noted in Significant Results, aggregate scATAC-seq profiles reflect those of bulk 
islets, but the sparse nature of these epigenomic datasets have made assigning each single cell ATAC-seq 
profile to a specific cell type challenging.  We have transposed two additional samples and will determine if 
changing transposase concentration results in more robust scATAC-seq profiles in the next month.  If it does 
not, we will contact Dr. Thakar and discuss an alternative approach, namely ATAC-seq of each endocrine cell 
type enriched by fluorescence-activated cell sorting (FACS) to define alpha, beta, delta, and PP/gamma cell 
type epigenomes in ND and T2D islets. As these samples will be processed in parallel with the transcriptome 
profiling (Aim 1d), we anticipate the same timeline to reach completion.  

2d: Identify cell type-specific epigenomic differences between ND and T2D samples 
Milestone (anticipated. 15 months): Identification of cell type-specific differences in regulatory element 
use/epigenome signatures in T2D and ND states 
Plans moving forward: The specific strategy to meet a timeline of completed data collection and analyses of 
~16-17 months is detailed for Aim 2c, above. We have completed differential analyses of whole islet ATAC-seq 
profiles from ND and T2D donors, thus the pipeline is in place and analysis should ≤ 2 weeks longer than the 
time needed to profile and sequence the samples.  

4. IMPACT: Describe distinctive contributions, major accomplishments, innovations, successes, or any
change in practice or behavior that has come about as a result of the project relative to:

What was the impact on the development of the principal discipline(s) of the project?   

 

What was the impact on other disciplines?   

Our single cell studies and datasets led to some collaborative discussions with Dr. Zhijin Wu at Brown 
University. She is developing novel approaches to analyze single cell data to reveal new and unique insights 
into the dynamics and mechanisms of gene expression at the single cell level.  The results of this collaboration 
have yielded co-authorship on a manuscript describing their methodology, which is in preparation for 
submission to Bioinformatics. 

Nothing to Report 
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What was the impact on technology transfer?    
 
 

 
 
What was the impact on society beyond science and technology? 

 
Data from this study were shared in the Community Health Discussion series, a community outreach initiative 
involving The Jackson Laboratory and The Children’s Museum in West Hartford. In this educational 
presentation for the general public, I presented initial results from our single cell islet transcriptome analyses 
and explained how they can reshape our understanding of pathogenic events/processes contributing to diabetes 
and how they may shift our approach to preventing and treating diabetes. 
 
 
5. CHANGES/PROBLEMS:  
 
Changes in approach and reasons for change  
 
 
 
 
Actual or anticipated problems or delays and actions or plans to resolve them 
 
As noted above, we encountered unforeseen delays obtaining T2D islets due to lower than usual availability and 
unproductive islet yields in ProdoLabs/IIDP islet distribution centers.  In consultation with the IIDP 
coordinating center, we have implemented a new strategy to prioritize T2D islets in targeted offers and to obtain 
matched non-diabetic islet offers via the open offers.  In the span of one month, this strategy yielded islets from 
a well-matched pair of T2D and ND donors.  Thus, we are confident this plan will result in higher rates of 
procurement over the next 3-5 months that should allow us to meet originally proposed milestones and ultimate 
deliverables of cell type-specific differential expression (Aim 1d) and cell type-specific differences in 
regulatory element use (Aim 2d) in T2D vs, ND samples central to this proposal.  
 
Changes that had a significant impact on expenditures 
 
We have incurred less material and experimental costs than budgeted in this current reporting period due to the 
delays in obtaining suitable islets matching our inclusion criteria. As we increase our T2D islet procurement 
rate (and the corresponding matched ND samples), we anticipate that these decreased costs will normalize to 
our projected budget in the upcoming months. 
 
 
Significant changes in use or care of human subjects, vertebrate animals, biohazards, and/or select 
agents: 
 
Significant changes in use or care of human subjects 

 
 
 

 
 
  

Nothing to Report 

Nothing to Report 

Nothing to Report 
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Significant changes in use or care of vertebrate animals. 
 
 
 
 

 
 
Significant changes in use of biohazards and/or select agents 
 
 
 

 
 

6. PRODUCTS:  List any products resulting from the project during the reporting period.  If there is nothing 
to report under a particular item, state “Nothing to Report.” 

 
• Publications, conference papers, and presentations    

Report only the major publication(s) resulting from the work under this award.   
 
Journal publications.   List peer-reviewed articles or papers appearing in scientific, technical, or 
professional journals.  Identify for each publication: Author(s); title; journal; volume: year; page 
numbers; status of publication (published; accepted, awaiting publication; submitted, under review; 
other); acknowledgement of federal support (yes/no). 
 

1. Lawlor N, Khetan S, Ucar D, and Stitzel ML. Genomics of Islet (Dys)function and Type 2 Diabetes. Trends 
Genet. 2017 Apr;33(4):244-255. PMID28245910;  

Acknowledgement of federal support: Yes 
Please see Appendix 
 

2. Lawlor N, George J, Bolisetty M, Kursawe R, Sun L, V S, Kycia I, Robson P, Stitzel ML. Single cell 
transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 
diabetes. 2016. Genome Res. Nov 18. [Epub ahead of print] PMID: 27864352  

Acknowledgment of federal support: Yes 
Please see Appendix 
 

3. Wu Z, Zhang Y, Stitzel ML, and Wu H. Two-phase differential expression analysis for single cell RNA-seq. 
Under review, Bioinformatics.  
 

4. Bolisetty M, Stitzel ML, and Robson, P.  CellView: Interactive Exploration of High Dimensional Single 
Cell RNA-seq Data. Under review, Bioinformatics.  
BioRxiv link: (http://biorxiv.org/content/early/2017/04/04/123810) 

Please see Appendix 
 

Books or other non-periodical, one-time publications.  
 
 

 
 
Other publications, conference papers, and presentations.   
 
 
 

Nothing to Report 

Not applicable; project does not involve the use of vertebrate animals. 

Nothing to Report 

Nothing to Report 
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• Website(s) or other Internet site(s)

• Technologies or techniques

 
 

• Inventions, patent applications, and/or licenses

 

• Other Products

7. PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS

What individuals have worked on the project? 

Name:   Michael Stitzel 
Project Role:  PD/PI 
Research Identifier:  http://orcid.org/0000-0001-5630-559X 
Nearest person month worked: 1 
Contribution to Project:  Dr. Stitzel has managed the project, directing both the experiments 

and analyses completed by Drs. Kursawe and Mr. Lawlor 

Name:  Joshy George 
Project Role: Co-Investigator/Computational Scientist 
Researcher Identifier: http://orcid.org/0000-0001-8510-8229 
Nearest person month worked: 1 
Contribution to Project:  Dr. George has set up pipelines and trained Mr. Lawlor to 

complete the computational analyses. 

Nothing to Report 

Nothing to Report 

Nothing to Report

Nothing to Report 
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Name: Romy Kursawe 
Project Role:  Research Assistant IV 
Research Identifier: 
Nearest person month worked: 
Contribution to Project: 

4 
Dr. Kursawe has completed all of the experiments for the project, 
including processing islets, preparing single cell suspensions, 
preparing RNA, transposing nuclei, and preparing ATAC-seq 
libraries 

Name:  Nathan Lawlor 
Project Role:  Data Analyst 
Research Identifier:  http://orcid.org/0000-0003-3263-6057 
Nearest person month worked: 1 
Contribution to Project: Mr. Lawlor has implemented and runs the published analysis 

pipelines for single cell ATAC-seq and single cell RNA-seq and 
internal pipelines established by Dr. George.  In addition, he has 
completed differential analyses between cell (sub)populations and 
has participated in analyses and content for peer-reviewed 
publications supported by this funding 

Has there been a change in the active other support of the PD/PI(s) or senior/key personnel since the last 
reporting period?  

Yes.  Changes in Other Support for Key Personnel are italicized below. 

Stitzel, Michael L 

Active 

Supporting Agency: NIH/NIDDK  5 R00 DK092251-05 PI: Stitzel 
Project Title: Investigation of noncoding variation in human pancreatic islets and their 

developmental precursors 
Role: Principal Investigator Effort: 6.00 CM 
Entire Project: 08/20/2014 - 07/31/2017 $794,250 
Current Year: 08/01/2016 - 07/31/2017 $249,000 
Project Goals: The goal of this research project is to understand the role that genetic variation 

in non-protein coding regulatory regions of the genome play in human 
pancreatic islet function and dysfunction. 

Specific Aims: 1. Determine which of approximately 40 candidate regulatory regions in the
human genome function as enhancers, silencers, or insulators in human islets; 2. 
Determine which elements contain variants that alter gene expression in adult 
human islets; 3. Determine which elements contain variants that alter gene 
expression in pancreatic precursor cells. 

Overlap: None 
Contracting/ 
Grants Officer: 

Sheryl Sato - satos@extra.niddk.nih.gov 
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Supporting Agency: Department of Defense  
W81XWH-16-1-0130 

PI: Stitzel 

Project Title: 
Role: 

Single-Cell Dissection of Human Pancreatic Islet Dysfunction in Diabetes 
Principal Investigator Effort: 0.50 CM 

Entire Project: 06/01/2016 - 11/30/2017 $350,000 
Current Year: 06/01/2016 - 11/30/2017 $350,000 
Project Goals: The goal of this project is to test the hypothesis that non-diabetic (ND) and T2D 

islets exhibit distinct cell type-specific transcriptomic and/or epigenomic 
signatures that are masked by the cellular heterogeneity in whole islet studies. 

Specific Aims: Aim 1: Identify cell type-specific transcriptome signature differences between 
non-diabetic (ND) and T2D 
islets using single cell RNA-sequencing (scRNA-seq); Aim 2: Identify cell type-
specific epigenome (open chromatin) signature differences between ND and 
T2D islets using single cell assay for transposase-accessible chromatin using 
sequencing (scATAC-seq). 

Overlap: None 
Contracting/ 
Grants Officer: 

Lisa Sawyer - lisa.m.sawyer22.civ@mail.mil 

Completed 

The Jackson Laboratory Director's Innovation Fund JAX-DIF-FY15-DUJB  
“Advancing ATAC-seq Data Generation and Analysis Pipeline for Epigenetic Biomarker Discovery” 
PI: Banchereau/Ucar 
Role: Co-Investigator 

The Jackson Laboratory Director's Innovation Fund TJL-DIF-FY14-GRHGWC 
“Maximizing Human and Mouse Resources to Identify Novel Variants for Alzheimer’s Disease” 
PI: Carter /  Howell 
Role: Co-Investigator 

The Jackson Laboratory Director's Innovation Fund TJL-DIF-FY14-GWC 
“Genetics of Molecular Epigenetics” 
PI: Carter 
Role: Co-Investigator 

George, Joshy 

Active 

Supporting Agency: NIH/NCI  5 R01 CA195712-03 PI: Flavell / Palucka 
Project Title: Humanized mouse models to dissect in vivo the interplay between melanoma 

and the immune system 
Role: Co-Investigator Effort: 0.60 CM 
Entire Project: 05/14/2015 - 04/30/2018 $1,304,550 
Current Year: 05/01/2017 - 04/30/2018 $395,352 
Project Goals: The goal of this project is to credential the humanized MISTRG mouse model as 

a platform for investigating the immune-mediated mechanisms of tumorigenesis 
by establishing transcriptional signatures linked with melanoma progression and 
confirming these signatures in tumors from patients. 

Specific Aims: 1. Determine the architecture of human melanoma tumors and their impact on
human tumor-infiltrating immune cells in vivo in MISTRG mice reconstituted 
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with donor CD34+ HPCs and melanoma cell lines; 2. Define how human 
melanoma alters the human systemic immunity in MISTRG mice; 3. Validate 
the MISTRG model in an autologous system where MISTRG mice are 
reconstituted with patient CD34+ HPCs and autologous tumors. 

Overlap: None 
Contracting/ 
Grants Officer: 

Debra Sowell - debra.sowell@nih.gov 

Supporting Agency: NIH/NIA  5 R01 AG052608-02 PI: Banchereau 
Project Title: Genomics and Epigenomics of the Elderly Response to Pneumococcal Vaccines 
Role: Co-Investigator Effort: 0.96 CM 
Entire Project: 09/01/2016 - 04/30/2020 $2,348,313 
Current Year: 05/01/2017 - 04/30/2018 $546,881 
Project Goals: The goal of this project is to dissect the age-related changes in immune cells that 
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Trends
T2DM is a multi-tissue metabolic dis-
order that results when pancreatic
islets fail to compensate for insulin
resistance in peripheral tissues.

Recent studies reaffirm the common
variant origins of T2DM genetic risk.
Variants overlap noncoding genomic
regions, implicating regulatory defects
in T2DM etiology.

Environmental stressors are asso-
Review
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Pancreatic islet dysfunction and beta cell failure are hallmarks of type 2 diabe-
tes mellitus (T2DM) pathogenesis. In this review, we discuss how genome-wide
association studies (GWASs) and recent developments in islet (epi)genome and
transcriptome profiling (particularly single cell analyses) are providing novel
insights into the genetic, environmental, and cellular contributions to islet (dys)
function and T2DM pathogenesis. Moving forward, study designs that interro-
gate and model genetic variation [e.g., allelic profiling and (epi)genome editing]
will be critical to dissect the molecular genetics of T2DM pathogenesis, to build
next-generation cellular and animal models, and to develop precision medicine
approaches to detect, treat, and prevent islet (dys)function and T2DM.
ciated with changes in gene expres-
sion programs leading to T2DM
progression.

Single cell sequencing technologies
permit investigation of islet cell type
transcriptomes and epigenomes with
single cell resolution and/or precision.
Such methods provide greater insight
into cell type-specific perturbations
and their roles in T2DM.

Recent studies suggest that other cells
(alpha, delta, and PP/gamma) in the
islet have important roles in islet/and/
or beta cell function, resilience, and
T2DM pathogenesis.
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Lay of the Land: (Functional) Genomic Landscape of Islets and T2DM
T2DM is a complex metabolic disorder with both genetic and environmental components. It
results from the dysfunction and loss of insulin-secreting beta cells in the endocrine pancreas
(Islets of Langerhans) as they work to secrete more insulin to counteract insulin resistance in
peripheral tissues (adipose, skeletal muscle, and liver). Ultimately, T2DM manifests as uncon-
trolled elevations in blood glucose levels. GWAS (see Glossary) have systematically identified
hundreds of single nucleotide variants (SNVs), representing >150 regions of the genome
(loci) [1], that are associated with T2DM risk and differences in T2DM-related quantitative
metabolic traits, such as insulin, proinsulin, and glucose levels. Most (>90%) of these SNVs
reside in noncoding regions of the genome. In parallel, functional (epi)genomics approaches to
map open chromatin using DNase I hypersensitive site sequencing (DNase-seq), assay
for transposase-accessible chromatin sequencing (ATAC-seq), and histone modification
and transcription factor (TF)-binding patterns using chromatin immunoprecipitation
sequencing (ChIP-seq) have identified genome-wide location of regulatory elements (REs),
such as promoters, enhancers, and insulators, in >150 human cell types and tissues. T2DM
SNVs are significantly and specifically enriched in islet-specific REs [2–7], suggesting that
changes in islet RE activity and target gene expression are a common mechanism underlying
the molecular genetics of islet dysfunction and T2DM [8] (Figure 1A). Indeed, recent studies
have identified putative factors binding these REs and have detected allelic effects on their
binding and target gene expression [9–11].

In this review, we discuss how recent studies are improving our understanding of how islet REs
are perturbed by SNVs contributing to T2DM risk [1,12–19] and are elucidating the transcrip-
tional underpinnings of islet responses to (patho)physiological environmental changes, such as
aging, circadian rhythms,Western diet and lifestyle, as well as oxidative, endoplasmic reticulum
(ER), and inflammatory stress responses [20–25]. We explore how studies applying next-
generation sequencing (NGS) to profile individual cells are improving our comprehension of islet
biology and reshaping our view of T2DM pathogenesis. Finally, we examine similarities and
differences between mice and humans in the ‘omics of islet function and T2DM (summarized in
244 Trends in Genetics, April 2017, Vol. 33, No. 4 http://dx.doi.org/10.1016/j.tig.2017.01.010
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Glossary
Assay for transposase-accessible
chromatin sequencing (ATAC-
seq): a technique used to profile
regions of open chromatin from small
cell numbers.
Chromatin immunoprecipitation
sequencing (ChIP-seq): a method
used to study DNA–protein
interactions.
Chromatin interaction analysis by
paired-end tag sequencing (ChIA-
PET): a method used to study 3D
chromatin interactions genome wide.
CpG sites: areas of DNA containing
a cytosine nucleotide directly linked
to a single phosphate group and
guanine nucleotide. These sites are
often methylated and influence
transcription.
Credible sets of SNPs: lists of
sequence variants with 95%
posterior probability of containing a/
the causal disease-associated SNP
(s) [99].
Deconvolution: a statistical
framework to resolve a
heterogeneous mixture into its
constituent elements.
Dedifferentiation: the process in
which a mature differentiated cell
type reverts to an earlier
developmental and/or precursor
state.
DNA methylation: molecular
process wherein a methyl group is
covalently attached to a DNA base
without altering the DNA sequence.
DNase I hypersensitive site
sequencing (DNase-seq): a
method used to characterize
regulatory and open chromatin
regions of the genome.
Expression quantitative trait loci
(eQTL): approach to link sequence
variation at a position in the genome
to expression of target gene(s).
Genome-wide association study
(GWAS): statistical association of
sequence variation with disease risk
or variability in a measurable
phenotypic trait and/or feature.
Glycated hemoglobin (HbA1C): a
type of hemoglobin modification that
is measured to determine plasma
glucose concentration.
RNA-sequencing (RNA-seq):
measures the amount of RNA in a
sample at a given time.
Single nucleotide polymorphism
(SNP): nucleotide variation at a
specific location in the genome that
exists with >5% frequency in the
population.
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Figure 1. Genomic Effects of Genetic and Environmental Perturbations Contributing to Pancreatic Islet
Dysfunction and Type 2 Diabetes Mellitus (T2DM). (A) DNA single nucleotide variants (SNVs) may enhance (gain-of-
function) or diminish (loss-of-function) transcription element (e.g., enhancer) activity and islet gene expression. Most
T2DM-associated SNVs reside in noncoding regions of the genome and overlap islet regulatory elements (REs)
[2,3,12,14,15,32,47], implicating disruptions in gene regulatory network components as a central molecular feature in
disease pathogenesis. A subset of SNVs has been linked to changes in basal islet gene expression [11,31]. (B)
Environmental factors, such as inflammation, diet, aging, circadian rhythms, and stress, may also influence RE activity,
resulting in altered and/or novel transcription of genes essential for islet function [20–25,48–50,57,58]. Abbreviations: TF,
transcription factor; TSS, transcription start site
Figure 2, Key Figure). Throughout, we highlight future challenges and opportunities and offer
perspectives on how these recent developments set the stage for precision medicine
approaches to understand, treat, and prevent T2DM.

Homing in on T2DM Genetic Risk and Architecture
Since initial T2DM GWAS reports in 2007 [26–29], the list of genomic loci in which sequence
variation contributes to T2DM risk and variability in quantitative measures of pancreatic islet
function has grown to over 150 [1,14,30]. Associated SNVs at each locus contribute modestly
to increased T2DM risk [odds ratios (OR) 1.05–1.75]. Together, these loci only explain a fraction
of T2DM heritability [13,14]. Genetic consortia continue to dissect the genetic architecture of
T2DM using larger cohorts with increasing ethnic diversity and/or representation. Recent efforts
have reported [366_TD$DIFF][12,14,30,99] fewer ‘new’ T2DM loci (N=10) than previous studies. Importantly,
however, they are refining the genetic signals at known (previously associated) T2DM loci to
define ‘credible sets’ of single nucleotide polymorphisms (SNPs) that are the most
probable causal and/or functional SNPs driving the association and, consequently, the result-
ing molecular and/or phenotypic consequences.

TheGOT2DandT2D-GENESconsortia sought to identify less commonSNVs (0.1%<MAF<5%)
with larger effect size that may underlie common variant associations or may account
for some of the T2DM ‘missing heritability’ using a combined whole-genome sequencing
(WGS), exome sequencing, and genotype imputation approach [14]. These efforts identified
protein-coding variants and/or mutations that are the most likely causative variant or
effector transcripts for 12 out of 78 GWAS loci, confirming five nominated in previous
studies (PPARG, KCNJ11-ABCC8, SLC30A8, GCKR, and PAM loci) and identifying seven
Trends in Genetics, April 2017, Vol. 33, No. 4 24518



Single nucleotide variant (SNV):
changes in a given nucleotide
sequence in the genome.
Stretch/super enhancers:
extended (>3 kb) regions of the
genome marked by enhancer
chromatin states; enriched near
genes that are important for cell type
identity and cell type-specific
functions.
Subpopulation: a subset of cells
within a tissue distinguished by the
expression of specific marker genes
and/or proteins.
Trans-differentiation: the process
in which a mature cell type converts
into another mature cell type.
new ones (FES, TM6SF2, and RREB1 in the PRC1, CILP2, and SSR1 loci, respectively, and
TSPAN8, THADA, HNF1A, and HNF4A). For the remaining loci, noncoding SNVs constitute
the putative causal SNVs. Comparison of multiple genetic models with the empirical data
generated in this study suggest that a long tail of common variants with lower effect sizes [367_TD$DIFF]may
comprise the missing heritability and reaffirms the importance of common, regulatory varia-
tion in the genetic architecture of T2DM (see Outstanding Questions). Perhaps most impor-
tantly, this immense effort has narrowed the list of putative causal SNVs to a handful for five
loci and by 50% on average for the 78 T2DM-associated autosomal loci investigated [14].
Similar themes and reductions in credible sets were reported for fasting glucose- and insulin-
associated loci [30].

Ongoing islet epigenomic and transcriptomic analyses are progressively defining the regulatory
potential of variant loci, identifying SNV-RE overlaps, and nominating potential target genes,
whose dysfunction is likely to contribute to T2DM [2,3,11,12,14,15,30–32]. Open chromatin
(DNase-seq, ATAC-seq) and histone modification and/or TF-binding profiling (ChIP-seq) indi-
cate that T2DM and related trait-associated SNVs are especially prominent in islet distal REs
and stretch/super enhancers [2,3,5,33,34]. Due to the long distances over which REs might
act, additional work to elucidate the target genes of T2DM SNV-containing REs is needed.
Chromosome conformation capture techniques, such as 3C, 4C, 5C [35], Hi-C [36], chro-
matin interaction analysis by paired-end tag sequencing (ChIA-PET) [37], and HiCHIP
[38] will be important components to effectively map interactions between REs and their target
genes (see Outstanding Questions). In two separate studies, RNA-sequencing (RNA-seq) of
89 [31] and 118 [11] human islet samples identified 616 and 2341 expression quantitative
trait loci (eQTLs), respectively. These analyses were the first studies linking SNVs to gene
expression changes in islets to define the putative genetic control of islet function and failure.
However, of the 216 eQTLs common to both studies, only 14 overlapped with T2DM-
associated loci [11]. This may be due to power limitations and an inability to detect eQTLs
beyond their primary signal. Alternatively, this relatively low overlap could suggest that T2DM
SNVs affect islet physiological or pathophysiological responses, not just basal expression, as
has been measured to date. Indeed, a recent study suggested that several putative T2DM
GWAS genes are regulated by NFAT, a TF involved in calcineurin signaling responses [39].
Alternatively, the detection of eQTLs overlapping T2DM-associated SNVs in peripheral tissues,
such as skeletal muscle [40] and adipose [41] tissue, reminds us that these other metabolic
tissues should not be ignored in the T2DM molecular genetics and pathogenesis, and warrant
further investigation of genomic variation in these tissues.

Recent islet studies suggest that regulatory noncoding RNAs (ncRNAs) contribute to diabetes
progression and beta cell (dys)function [31,42,43]. Aberrant expression of 17 long noncoding
(lncRNAs) has been associated with glycated hemoglobin (HbA1c) levels [31]. This study
identified eQTLs for two of these transcripts (LOC283177 and SNHG5), but the eQTL SNVs did
not overlap with T2DM SNVs [31]. Similarly, a study byMorán and colleagues identified nine out
of 55 T2DM-associated loci that contained lncRNAs located within 150 kb of, but not directly
overlapping, the reported lead SNVs [42]. In the KCNQ1 locus, T2DM risk SNVs overlap both
KCNQ1 and KCNQ1OT1 [43,44], a long intergenic noncoding RNA (lincRNA) also found to be
significantly induced in T2DM islets [42]. We anticipate that additional links will emerge in the
coming years. Other studies suggest that islet lncRNA alterations could also contribute to type
1 diabetes mellitus (T1DM), because a T1DM GWAS SNV (rs941576) was identified in the
MEG3 lincRNA locus [43,45]. Functional analyses in human islets and rodent models will clarify
the roles of these ncRNAs in islet development, (dys)function, and diabetes.

DNAmethylation studies of nondiabetic (ND) and T2DM islets have suggested that epigenetic
dysregulation promotes T2DMdevelopment [46,47]. DNAmethylation profiling of 15 T2DM and
246 Trends in Genetics, April 2017, Vol. 33, No. 4 19



Key Figure

Converging and Diverging Genetic, Environmental, and Cellular Aspects of Islet (Dys)function and
Type 2 Diabetes Mellitus (T2DM) in Mice and Humans

HUMANMOUSE SHARED

           •Islet composition [62, 63]:

                - Beta ~75% (74-76%)

                  - Alpha, ~19% (18-20%)

              - Delta, ~6% (5-7%)

           -PP/Gamma, <5%

       -Epsilon, <1%

  • � alpha cell expression of 

   neuropeptide (Pyy) and

   neurotransmitter receptors 

  (Gria2, Gria3) [83]

• Beta cell specific expression

 of maturation marker Ucn3 [69, 76]

• Delta cell specific expression 

   of islet TF Neurog3 [76]

      •� beta cells proliferation

        in response to hyperglycemia 

           or insulin resistance [57].

                •� glucose-stimulated insulin

                   secretion [58]

•Pancreatic cell type 

transcriptomes are 

conserved [76, 83]

•Heterogeneity amongst 

beta cell transcriptomes [76, 79, 80, 84, 85] 

•Trend of � beta cell mass in T2D [88, 90-92]

•Putative T2D genes also dysregulated in diabetic 
mice [51] 

•Circadian cycling of islet REs [50]

• NFAT regulates T2D GWAS genes’ expression [39]

•FOXA2 implicated in T2D genetics [15], aging � 
expression [49]

•Delta cell specific ghrelin receptor functionality [70]

•Beta cell epigenomic and transcriptomic signatures 
are age dependent [48, 49]

•� insulin secretion and � proliferation in 

aged beta cells [48, 49]

•Parental diet influences offspring 

T2D susceptibility [23, 48-50] 

•Islet composition [61-63]:

    - Beta ~55% (28.4-76.2%)   

      - Alpha, ~35% (23.8-71.6%)

         - Delta, ~10% (2.4-12%)

            -PP/Gamma, <5%

               -Epsilon, <1%

           •Aging � expression of

            SIX2/SIX3 [48]

            •Beta cell specific expression and   

             dysregulation of T1D/T2D GWAS

               candidate DLK1 [75, 76]

             •Delta cell specific expression of      

               LEPR [70, 75, 76, 79, 80]

           •Chronic insulin resistance leads

          to � superoxide and amyloid 

        deposit formations [57]

     •� basal insulin secretion [58]

Figure 2. Parallel analyses of human and mouse islets are revealing important similarities [371_TD$DIFF][15,23,39,48–51,70,76,79,80,83–85] (A) and differences [372_TD$DIFF][48,57–58,61–
63,69-70,75-76,79–80,83] (B,C) between molecular features of islet identity and (dys)function in mice and humans. Black text highlights significant findings regarding
islet cellular composition and identity. Blue text highlights longitudinal and/or comparative analyses of genome-wide molecular data sets and environmental effects on
islet (dys)function. These features reaffirm the value of modeling T2DM in mice to delineate important species-specific differences in islet biology that may reflect distinct
T2DM causative mechanisms. Abbreviations: ", increase; #, decrease; GWAS, genome-wide association study RE, regulatory element; TF, transcription factor; T1DM,
type 1 diabetes mellitus
34 ND islets using the Illumina 450BeadChip identified 1649 differentially methylatedCpGsites
for 853 genes, 17 of which reside in T2DM-associated loci [46]. Surprisingly, most (97%) of
these CpG sites were hypomethylated in T2DM islets, suggesting that they suffer from
decreased methyl donor levels or decreased activity of DNA methyltransferases.
Trends in Genetics, April 2017, Vol. 33, No. 4 24720



Genomics of Islet Responses to Environmental Changes and T2DM
Pathogenesis
Intrinsic and extrinsic environmental changes, such as aging, and Western diet and/or lifestyle,
respectively, are linked to islet dysfunction and T2DM risk [23,48–50] (Figure 1B). Multiple
groups have begun to characterize the genomic effects of these environmental inputs and
insults on islets. Transcriptome profiling of adult and juvenile islet beta cells identified 565 (209
up, 356 down) and 6123 (2083 up, 4040 down) differentially expressed genes in humans and
mice, respectively [48,49]. Signatures of decreased proliferative capacity in aged islets and/or
beta cells were apparent in both species, perhaps best illustrated by increased CDKN2A/B
expression, a gene cluster with established cellular senescence functions and implicated as
‘Type 2 Diabetogenes’ for a T2DM GWAS signal on 9p21 [48,49,51]. Unexpectedly, tran-
scriptome and epigenome signatures suggested superior insulin secretory capacity of adult
islets, which was confirmed functionally by glucose-stimulated insulin secretion (GSIS) assays
[48,49]. DNAmethylation and histone profiling indicated that these expression differences were
largely mediated by chromatin remodeling and epigenetic modification of distal Res, such as
enhancers. Using whole-genome bisulfite sequencing (WGBS), Avrahami and colleagues
identified approximately 14 368 aging-related differentially methylated regions (DMRs) between
the beta cells of juvenile and adult mice. DMRs overlapping distal REs outnumbered those
overlapping promoters 3:1, and exhibited larger changes in magnitude of methylation. Distal
DMRs that lost methylation with aging were enriched for binding sites of important islet TFs,
such as Foxa2, Neurod1, and Pdx1, suggesting these factors mediate the expression differ-
ences and improved functionality in adult islets. Finally, genes showing differential expression in
adult islets were accompanied by differential methylation at nearby distal REs more often than
at their promoters. These data suggest that, in addition to their importance in T2DM genetic
risk, enhancers also govern important transcriptional regulatory changes accompanying or
mediated by aging.

Circadian rhythm links behavior and metabolism to day–night cycles. Notably, insulin secretion
oscillates with a circadian periodicity. Analysis of mouse islet transcriptomes revealed that
approximately 27% of the beta cell transcriptome (N=3905 genes) demonstrated circadian
oscillation, including genes responsible for insulin synthesis, transport, and stimulated exocy-
tosis [50]. The human orthologs of 481 of these genes exhibited circadian oscillations in human
islets. ChIP-seq identified 742 out of 3905 of these oscillatory genes as direct targets of the
circadian clock TFs CLOCK and BMAL1. As with aging, most differential sites were at distal
REs. Beta cell-specific deletion of Bmal1 resulted in islet failure and diabetes in mice. This study
demonstrates the importance of circadian rhythms in islet function and suggests that genetic or
environmental perturbation of this program contribute to T2DM risk and pathophysiology.
GWAS results suggest that this could be the case, because SNVs in the CRY2 locus, a
component of the circadian machinery, and MTNR1B, a gene encoding a melatonin receptor,
are associated with altered islet function and T2DM [1,52]. It will be interesting to see whether
genetic perturbations in circadian clock TFs or their binding sites emerge as one of the
molecular mechanisms underlying T2DM GWAS.

Maternal nutrition and in utero stresses have been linked to T2DM risk for offspring in humans
and rodents [23,53–55]. Although changes in fetal nutrition are suggested to influence offspring
metabolism via epigenetic modifications [23,56], the genome-wide effects on the islet (epi)
genome have not been determined. Similarly, stress responses to elevated oxidative and/or ER
stress lead to islet failure, impaired insulin secretion, and T2DM susceptibility [57–59]. Ulti-
mately, these responses converge on the nucleus and involve the redistribution or covalent
modifications of master TFs (MAFB, NKX6-1, and PDX1) or stress response factors (FOXO1,
ATF4, and HIF1alpha) [20,22,53,57,58]. (Epi)genomic analyses of these stress responses are
warranted and may reveal important connections between T2DM SNVs and altered islet stress
248 Trends in Genetics, April 2017, Vol. 33, No. 4 21



responses. Moving forward, it will be crucial to understand the extent to which genetic and
epigenetic changes interact in T2DM pathogenesis (see Outstanding Questions). Response
QTL (reQTL) and epigenome-wide association studies (EWAS) [56] should provide these
important links (see Outstanding Questions). Indeed, studies of SNV effects on immune cell
responses identified 121 reQTLs, 38 of which overlapped autoimmune disease-associated
SNVs [60]. Specific factor(s) and pathway(s) activated by insulin resistance appear to differ
between mouse and human islets [57,58] (Figure 2); thus, we emphasize that caution must be
taken in study design and interpretation to interrogate this and possibly other islet responses.

Deconstructing Pancreatic Islet Cellular and/or Functional Heterogeneity
Islets comprise 1–5% of the pancreas and consist of at least five endocrine cell types perform-
ing coordinated but distinct functions and each producing a unique hormone in the islet: beta
(insulin), alpha (glucagon), delta (somatostatin), gamma (pancreatic polypeptide), and epsilon
(ghrelin) cells [61–64]. Precise understanding of islet molecular changes during T2DM devel-
opment is likely complicated by variability in islet cell type composition. On average, islets
comprise 55% beta cells, 35% alpha, 10% delta, and less than 5% and 1% gamma/PP and
epsilon cells, respectively [61–63]. However, this can vary considerably between donors, with
ranges of 28.4–76.2%, 23.8–71.6%, and 2.4–12% for beta, alpha, and delta cell compositions,
respectively [61] (Figure 2). This cellular heterogeneity, combined with donor-to-donor variabil-
ity, masks the molecular repertoire of each cell type and impedes clear understanding of the
molecular programs perturbed in each cell type by T2DM pathogenesis.

Until recently, most studies had focused on epigenetic and transcriptional analyses of whole
islets or, at the expense of other cell types, beta cells. However, recent studies demonstrating
roles for alpha [65–67] and delta cells [68–71] in modulating beta cell function and/or resilience
and in T2DM pathogenesis are fueling renewed interest in these cell types. First attempts to
overcome these obstacles and understand the molecular repertoire of each islet cell type
focused on transcriptomic analyses of sorted and enriched cell type populations [61,72–74].
However, such methods were unable to effectively isolate and enrich the less abundant
nonbeta cells [75], leaving much of the functional genomic landscape of islets imprecisely
assigned and/or classified or, in the case of rarer islet cell types, undefined.

Within the past year, multiple groups have applied single cell transcriptome profiling to islets to
begin to address questions about islet physiology [75–83] (see Outstanding Questions) with
single cell resolution, such as: (i) what is the gene repertoire of each islet cell type? (ii) Does the
gene repertoire reveal any new and/or unexpected roles for each cell type in islet (patho)
physiology? (iii) Are there novel cell types or unappreciated subpopulations in islets? These
studies are providing new appreciation of the repertoire of both islet beta and nonbeta cells.
Given that much of the beta cell transcriptional repertoire has been extensively studied [61,72–
74], several features have been validated, including genes involved in cell survival and/or
maturation (PDX1), regulation of insulin secretion (RGS16, SYT13, and ENTPD3), and diabetes-
associated genes (DLK1, MEG3, and SLC2A2) [75,76,78–81,83]. Unique expression of genes
encoding TFs (IRX2), membrane glycoproteins (DPP4), and hormone transporters (TTR)
were also validated in alpha cells. Analysis of single alpha cell transcriptomes uncovered
signatures involved in wound healing (FAP), blood clotting (F10), and tissue biogenesis (LOXL4)
[75,76,78–81,83], suggesting that they share functions akin to pancreatic fibroblast and/or
mesenchymal cells.

Single cell profiling has provided new views of the roles of delta and PP/gamma cells in islet
physiology and the molecular genetics of islet failure and diabetes. For example, these studies
revealed that delta cells uniquely express appetite-suppressing leptin (LEPR) and appetite-
stimulating ghrelin (GHSR) hormone receptors [75,79,80], implicating them as the integrators
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and regulators of these pathways in the islet. GHSR functionality has been demonstrated in
both human and mouse delta cells [70]. LEPR expression is unique to human delta cells,
suggesting that these cells uniquely mediate the leptin response in human islets
[70,75,76,79,80] (Figure 2). Expression of genes associated with congenital hyperinsulinemia
(CHI) (UCP2 andHADH) in delta cells further implicates this cell type in themolecular genetics of
CHI [75]. PP/gamma cell transcriptomes exhibited enrichment of genes involved in neuronal
development (MEIS2 and FEV) [75,78–80] and serotonin catalysis and reuptake (TPH1 and
SLC6A4) [75,79,80,83]. Together, these findings suggest that delta and PP/gamma cells act as
the ‘brains’ of the pancreatic islets, capable of receiving and integrating various neuronal
signals to coordinate islet function. Due to their scarcity in human pancreatic islets (<1% of islet
volume), our knowledge of the epsilon cell repertoire and its putative function(s) remain
speculative. Nonetheless, the insights gleaned from these initial studies undoubtedly motivate
follow-up studies that continue transitioning from whole-islet to functional constituent cell
studies. Identification of genes encoding cell type-specific surface markers (beta, LRRTM3
and CASR; alpha, DPP4 and PLCE1; delta, LEPR, GHSR, and ERBB4; PP/gamma, SLC6A4
and PTGFR; and epsilon, ANXA13) [75,79] provide new targets that may be exploited for more
accurate purification of each islet cell type and analysis of its specific responses to genetic and
environmental stressors.

Islet Subpopulations and Cell Type Heterogeneity
Detection of heterogeneous beta cell subpopulations was reported for enriched cell and single
cell studies. These include four subpopulations with differing expression of ST8SIA1 and CD9
[84], five subpopulations defined by RBP4, FFAR4/GPR120, ID1, ID2, and ID3 expression [80],
and subpopulations characterized by ER stress-associated [76] and oxidative stress-associ-
ated genes [79]. Fltp/CFAP126 expression has been reported to distinguish proliferating and
mature beta cell subpopulations in mice [85], but single cell transcriptome analyses failed to
detect this distinction in human beta cells [75,83]. However, proliferative and mature human
beta cells were identified by single cell mass cytometry analysis [86], suggesting that mice and
humans make use of distinct cell growth pathways. Given that each study detected distinct
beta cell subpopulations with different gene signatures, it remains difficult to distinguish
whether these subpopulations are functionally distinct cells or the result of technical con-
founders, such as the time to sort and enrich in a harsh cell sorting environment, time for cell
capture, or cell and transcript capture efficiency [87].

Single Cell Dissection of Islet Dysfunction and T2DM
Single cell transcriptome analyses provide a fresh and agnostic opportunity to investigate the
putative mechanisms underlying islet dysfunction in T2DM. To date, single cell transcriptome
profiling has been completed for a total of 1831 and 1970 islet cells from 26 ND and 15 T2DM
donors, respectively [75,80,81,83]. Comparison of T2DM and ND single cell transcriptomes
suggest that specific alterations in islet cell type transcriptomes underlie T2DM pathogenesis
(Figure 3A). However, changes in cell proportions (Figure 3B), identity, and plasticity (Figure 3C,
D) have also been regarded as potential contributors to T2DM [72,88–92]. Specifically,
decreases in diabetic beta cell mass were suggested to be caused by reversion to endocrine
progenitor (hormone-negative) cells (Figure 3C) or different islet cell types (Figure 3D) rather
than to apoptosis. The model of transformed beta cell identity remains controversial. A recent
study concluded that the observed magnitude of decline in beta cell numbers in T2DM islets is
not accompanied by proportionate increases in cells exhibiting trans-differentiationmarkers
or increases in other islet cell types [93]. Rather, the presence of endocrine progenitor-like cells
in T2DM islets may represent newly forming endocrine cells [93]. Single cell profiling also did not
identify transcriptomic evidence of dedifferentiated or trans-differentiated cells in T2DM islets
(Figure 3C,D) [75,80,83]. Similar trends were observed in whole-islet RNA-seq data upon
deconvolution, where cell type proportions did not significantly vary between hypoglycemic
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Figure 3. Proposed Cellular Mechanisms Contributing to Type 2 Diabetes Mellitus (T2DM) Development.
(Center) Cartoon representation of human islet cellular composition. Studies have described the following phenomena: (A)
Islet single cell transcriptomic studies [75,80,83] suggest that cell type-specific changes in gene expression (depicted as
half-shaded cells) contribute to T2DM pathogenesis. These studies suggest that potential pathogenic expression changes
occur in each islet cell type, not just beta cells. [363_TD$DIFF](B) Decreases in beta cell (in yellow) numbers [25,92,100,101], thought to
precede islet dysfunction and development of insulin resistance. [364_TD$DIFF](C) Alterations in islet cellular identity may also account for
islet failure. Dedifferentiation of islet cell types to precursor cell types and/or states (hexagons) has been proposed to
underlie the loss of beta cell mass and function in T2DM [88,90–92]. [365_TD$DIFF](D) Similarly, trans-differentiation of islet cell types may
lead to imbalances in islet cell proportions and improper function [72,88,89]
and hyperglycemic islets [76]. Thus, the transcriptome data to date do not provide supporting
evidence of dedifferentiation in T2DM islets.

Transcriptomes of each cell type from ND and T2DM donors exhibited remarkable correlation
overall. However, specific changes in gene expression were reported in T2DM beta cells,
including reduced expression of INS [75,80], genes important for insulin secretion (STX1A) [75]
and beta cell proliferation (FXYD2) [80,83], as well as elevated expression of genes implicated in
T2DM GWAS (DLK and , DGKB) [75]. Transcriptional differences were also identified in T2DM
alpha cells, including expression of CD36 [75,80], a crucial activator of the NLRP3 inflamma-
some [94], and RGS4, a negative regulator of GSIS [80]. Several genes were dysregulated in
T2DM delta cell transcriptomes [75,83]. However, the underlying biology of these candidates
remains undefined, with no association with islet growth or function [83]. Aside from these
encouraging examples, these single cell studies have not reached consensus regarding
differentially expressed genes between T2DM and ND cell types. Differences in islet donor
variability, islet isolation and/or transport, and single cell dissociation and/or sequencing
protocols may explain these inconsistencies across studies. We expect that sampling thou-
sands of single cells each from hundreds of individuals for large-scale meta-analyses will
provide a more convergent list of cell type-specific genes and pathways disrupted in T2DM
islets. It will also be important for future studies to profile cells from individuals at different points
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Outstanding Questions
T2DM-associated GWAS variants
explain only a small portion of T2DM
heritability, with rare variants showing
minimal contribution. Does a long tail
of common variants with small effect
sizes explain this missing heritability?
Or are we simply ‘underpowered’ to
detect rare variants and their contribu-
tion to T2DM heritability?

What are the genes targeted by T2DM
GWAS sequence variant (SV)-contain-
ing regulatory elements? Are these
links context specific? Does the risk
allele enhance (gain-of-function) or
repress (loss-of-function) RE function?

How do the transcriptomes and/or epi-
genomes of islets and islet cell types
change when subjected to variable
environmental stressors (oxidative
stress, inflammation, diet, etc.)? How
are they changed by intrinsic (aging,
circadian rhythms, etc.) environmental
factors? Which SVs regulate and alter
these islet responses?

What are the precise cellular and
molecular pathophysiological changes
in each cell type that lead to T2DM?
Are the major pathological changes
beta cell specific or do they involve
other islet cell types and/or non-islet
cell types?

Howmany islet and single cell samples
must be obtained to effectively capture
combined cell type heterogeneity while
controlling for technical and experi-
mental confounders? How many sam-
ples are needed to observe genetic
and/or epigenetic differences between
T2DM and ND states? Would stratifi-
cation of islets by T2DM risk genotype
improve cell type-specific T2DM
signatures?
along the T2DM pathogenesis spectrum, such as prediabetic individuals (5.5<HbA1c<6.0) to
identify and distinguish primary from secondary genomic changes that may be the cause or
consequence of progression to T2DM.

Concluding Remarks and Future Directions
The past few years have marked exciting developments in our understanding of the underlying
genomic, environmental, and cellular components driving T2DM pathogenesis. Numerous
common (and only few rare) genetic SNVs have been implicated in T2DMprogression [13,14]. It
is unclear whether the ‘missing T2DM heritability’ is explained by a larger distribution of
common SNVs with minimal effect sizes, whether current methods have missed critical rare
SNVs, or whether it will be captured by gene–gene and gene–environment interactions (such as
detected by reQTL). Thus far, most catalogued T2DM-SNVs occur in, and disrupt, islet RE
function; however, the causal connections between the two remain challenging to decipher.
eQTL and chromatin accessibility QTL (caQTL) [95,96] studies have been, and will continue to
be, essential for linking genetic variants to molecular phenotypes. A subsequent challenge will
be to link these molecular effects to pathways [39] and (patho)physiological phenotypes [97].

Functional genomic studies have identified minimal overlap between islet eQTLs and T2DM-
SNVs [11,31], suggesting that responses to environmental stress factors are key mediators of
T2DM pathogenesis. Mouse models have been instrumental in elucidating the genetic and
molecular regulation of these responses and how environmental stressors influence islet (dys)
function. However, observed differences between mice and humans in islet morphology,
composition, expression, and function remind us to exercise caution when extrapolating
findings in mice to human T2DM. Studies comparing the genomic features of human islets
and models are essential to define conserved features and those that require modification to
determine what aspects of islet dysfunction and T2DM we can model effectively and to decide
how and/or where we should manipulate or humanize the mouse (epi)genome to better model
human T2DM. (Epi)genome editing technologies, such as CRISPR/Cas9, can then be applied
to develop new cellular and animal models to more effectively study islet phenotypic changes
resulting from genetic and environmental variation. We anticipate that these integrative geno-
mic studies and techniques will also serve as valuable resources to determine the underlying
genetic changes and mechanisms of beta cell dysfunction that lead to T1DM [98].

Rapid developments in single cell NGS technologies have renewed interest in the less-studied
islet cell types. Deconstructing the major molecular changes that occur in each cell type during
T2DM progression has proven challenging, yielding inconsistent results between studies due to
patient donor variability and technical sequencing artifacts. This is also likely the result of limited
statistical power. In the future, it will be interesting to perform meta-analyses of available
transcriptomic data to maximize our confidence of changes in cell specific expression pro-
grams. Together, the innovative new genomic technologies of the past few years will allow us to
more precisely define, model, and manipulate the genes and pathways that have gone awry in
T2DM, with the ultimate goal of designing novel therapeutic approaches.
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Single-cell transcriptomes identify human islet cell
signatures and reveal cell-type–specific expression
changes in type 2 diabetes
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Blood glucose levels are tightly controlled by the coordinated action of at least four cell types constituting pancreatic islets.

Changes in the proportion and/or function of these cells are associated with genetic and molecular pathophysiology of

monogenic, type 1, and type 2 (T2D) diabetes. Cellular heterogeneity impedes precise understanding of the molecular com-

ponents of each islet cell type that govern islet (dys)function, particularly the less abundant delta and gamma/pancreatic

polypeptide (PP) cells. Here, we report single-cell transcriptomes for 638 cells from nondiabetic (ND) and T2D human islet

samples. Analyses of ND single-cell transcriptomes identified distinct alpha, beta, delta, and PP/gamma cell-type signatures.

Genes linked to rare and common forms of islet dysfunction and diabetes were expressed in the delta and PP/gamma cell

types. Moreover, this study revealed that delta cells specifically express receptors that receive and coordinate systemic cues

from the leptin, ghrelin, and dopamine signaling pathways implicating them as integrators of central and peripheral met-

abolic signals into the pancreatic islet. Finally, single-cell transcriptome profiling revealed genes differentially regulated be-

tween T2D and ND alpha, beta, and delta cells that were undetectable in paired whole islet analyses. This study thus

identifies fundamental cell-type–specific features of pancreatic islet (dys)function and provides a critical resource for com-

prehensive understanding of islet biology and diabetes pathogenesis.

[Supplemental material is available for this article.]

Pancreatic islets of Langerhans are clusters of at least four different
hormone-secreting endocrine cell types that elicit coordinated—
but distinct—responses to maintain glucose homeostasis. As
such, they are central to diabetes pathophysiology. On average,
human islets consist mostly of beta (54%), alpha (35%), and delta
(11%) cells; up to a few percent gamma/pancreatic polypeptide
(PP) cells; and very few epsilon cells (Brissova et al. 2005; Cabrera
et al. 2006; Blodgett et al. 2015). Human islet composition is nei-
ther uniform nor static but varies between individuals and across
regions of the pancreas (Brissova et al. 2005; Cabrera et al. 2006;
Blodgett et al. 2015). Cellular heterogeneity complicatesmolecular
studies of whole human islets and may mask important role(s)
for less common cells in the population (Dorrell et al. 2011b;
Bramswig et al. 2013; Nica et al. 2013; Blodgett et al. 2015; Liu
and Trapnell 2016). Moreover, it complicates attempts to identify
epigenetic and transcriptional signatures distinguishing diabetic
from nondiabetic (ND) islets, leading to inconsistent reports of
genes and pathways affected (Gunton et al. 2005; Marselli et al.
2010; Taneera et al. 2012; Dayeh et al. 2014). Conventional sorting
and enrichment techniques are unable to specifically purify each
human islet cell type (Dorrell et al. 2008; Nica et al. 2013;
Bramswig et al. 2013; Hrvatin et al. 2014; Blodgett et al. 2015),
thus a precise understanding of the transcriptional repertoire gov-

erning each cell type’s identity and function is lacking. Identifying
the cell-type–specific expression programs that contribute to islet
dysfunction and type 2 diabetes (T2D) should reveal novel targets
and approaches to prevent, monitor, and treat T2D.

In this study, we sought to decipher the transcriptional reper-
toire of each islet cell type in an agnostic and precise manner by
capturing and profiling pancreatic single cells from ND and T2D
individuals. From these profiles, we identified transcripts uniquely
important for each islet cell type’s identity and function. Finally,
we compared T2D and ND individuals to identify islet cell-type–
specific expression changes that were otherwise masked by islet
cellular heterogeneity. The insights and data from this study pro-
vide an important foundation to guide future genomics-based in-
terrogation of islet dysfunction and diabetes.

Results

Islet single-cell transcriptomes accurately recapitulate those

of intact islets

Pancreatic islets (>85% purity and >90% viability) were obtained
from eight human cadaveric organ donors (five ND, three T2D)
(Fig. 1A; Supplemental Table S1). Each islet sample was processed
to generate single-cell RNA-seq libraries (Fig. 1A; single cell) and
paired bulk RNA-seq libraries at three different stages of islet pro-
cessing (Fig. 1A; baseline, intact, and dissociated). All RNA-seq
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methods employed SMARTer chemistry (Methods), and bulk islet
cDNA libraries were sequenced to an average approximate depth
of 34 million reads (Supplemental Table S2). Baseline, intact, and
dissociated transcriptomes from each person were highly correlat-
ed (Supplemental Fig. S1). Transcriptomes clustered by donor and
not by processing condition or incubation time (Fig. 1B), strongly
suggesting that islet processing did not significantly alter islet
transcriptomes.

A total of 1050 islet cells (622ND and 428 T2D)were captured
on 11 Fluidigm C1 chips. cDNA libraries were constructed from

captured cells and barcoded, fragmented, pooled, and sequenced
to an average depth of 3 million reads (Supplemental Table S2).
Two separate library preparations from the same amplified cDNA
for each of 83 single cells demonstrated remarkable correlation,
suggestingminimal batch effects resulting from the cDNAprocess-
ing and sequencing steps. Resequenced samples are highlighted in
Supplemental Table S2 but were not included in subsequent anal-
yses. Transcript coverage is indicated in Supplemental Figure S2.
Approximately 81% (21,484/26,616) of protein-coding genes
and long intergenic noncoding RNAs (lincRNAs) were detected

Figure 1. Single-cell transcriptomes reflect those of paired intact islets. (A) Schematic of experimental workflow. Islets from each donor sample (n = 8
individuals) were dissociated using Accutase, and single-cell transcriptomes were synthesized from 1050 cells captured using 11 Fluidigm C1 chips. In par-
allel, “bulk” RNA-seq libraries were prepared from remaining dissociated single cells (dissociated) and from intact islets either flash frozen (baseline) or in-
cubated/processed (intact). (B) Unsupervised hierarchical clustering of baseline, intact, and dissociated islet transcriptomes demonstrates clustering by
person and not by processing/experimental condition. (C) Histogram demonstrating the number of genes detected in each single cell. Cells expressing
less than 3500 genes (n = 72) were removed from downstream analyses. (D) Scatter plot comparing intact islet bulk RNA-seq (n = 8) and ensemble sin-
gle-cell RNA-seq (n = 978) data demonstrates high correlation. (R2) Pearson’s R-squared; (TPM) transcripts per million; (P) person.
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in at least one cell from the collection. On average, each single cell
expressed 5944 genes (Fig. 1C). Cells expressing less than 3500
genes (n = 72) also exhibited high mitochondrial alignment rates
and other reported transcriptional metrics of cell death and/or
poor quality (Ilicic et al. 2016; Xin et al. 2016) and were removed
from subsequent analyses (Fig. 1C).

We next assessed the extent to which the remaining 978 sin-
gle-cell transcriptomes represent the expression patterns observed
in intact islets. Single-cell transcriptome ensembles from each per-
son were highly correlated (Pearson’s R2 ranged from 0.91–0.98)
(Supplemental Fig. S3), regardless of disease state. Pearson’s R2 val-
ues between individuals’ single-cell ensembles and corresponding
“bulk” transcriptomes ranged from 0.75–0.86 (Supplemental Fig.
S4) and did not differ substantially between ND (R2 = 0.87) and
T2D (R2 = 0.85) samples (Supplemental Fig. S5). Overall, ensem-
ble/aggregate single-cell transcriptome profiles correlated well
with those of pooled bulk islet transcriptomes from all individuals
(Fig. 1D, R2 = 0.87). These results suggest that the islet single-cell
transcriptomes are high quality and effectively reflect bulk islet
transcriptomes.

Single-cell profiling captures transcriptomes of major and minor

pancreatic endocrine and exocrine cell types

Five islet endocrine cell types have been assigned based on exclu-
sive and robust expression of the peptide hormone genes INS
(beta),GCG (alpha), SST (delta), PPY (PP/gamma), andGHRL (epsi-
lon) (Baetens et al. 1979; Nussey and Whitehead 2001; Zhao et al.
2008; Li et al. 2016; Xin et al. 2016;Wang et al. 2016). The pancre-
as also contains three exocrine cell types—acinar, stellate, and duc-
tal—that critically support digestion through synthesis and
transport of digestive enzymes (Pandol 2011; Reichert and Rustgi
2011). Each also has been identified by specific marker gene ex-
pression, including the serine peptidase gene PRSS1 (acinar)
(Dabbs 2013), the extracellular matrix protein gene COL1A1 (stel-
late) (Mathison et al. 2010), and the structural keratin gene KRT19
(ductal) (Dorrell et al. 2008, 2011a,b; Reichert and Rustgi 2011).
We used these marker genes to determine the representation of
each islet cell type among our 978 profiled single cells.

Density plots (Fig. 2A) revealed bimodal expression of each
marker gene across the population of single cells. Therefore, we
employed Gaussian mixture modeling (GMM) to classify the cells
unambiguously (Fig. 2B). Approximate log2 counts per million
(CPM) thresholds for each marker gene used to classify cell types
are provided in Supplemental Table S3. This approach identified
617 single cells (∼63%) from T2D and ND islets expressing a single
marker gene representative of each major endocrine and exocrine
cell type, examples of which are shown in Figure 2C. This included
239 alpha, 264 beta, 25 delta, and 18 PP/gamma cells (Table 1); the
proportions of each cell type are in the ranges previously reported
(Brissova et al. 2005; Cabrera et al. 2006; Blodgett et al. 2015). Only
one cell expressing high levels (log2CPM> 15) ofGHRLwas identi-
fied, which we presume to be an exceedingly rare epsilon cell.
Additionally, we obtained 19 stellate, 24 acinar, and 27 ductal cells
(Table 1), presumably from exocrine contamination of the islet cell
preparations. Only 21 cells (∼2%) expressed none of the specified
marker genes (Table 1). Approximately one-third (340/978) of cells
expressed more than one marker gene; these were removed from
subsequent analysis due to concerns that these represent two ver-
tically stacked cells in a given capture site (for details, see
Methods). Similar ratios of potential stacked cells have been report-
ed in other studies using the Fluidigm C1 platform to capture

mouse (Xin et al. 2016) and human islet cells (Wang et al. 2016).
Collectively, these single-cell data capture transcriptome profiles
representing each of the major and minor pancreatic endocrine
and exocrine cell types. Genome Browser tracks representing ag-
gregate single-cell expression for each islet cell type have been gen-
erated using HOMER (Heinz et al. 2010) and are made available
(see Data Access) to facilitate their use and investigation by mem-
bers of the islet biology and diabetes research communities.

Unsupervised analyses of islet single-cell transcriptomes identify

discrete clusters corresponding to cell type

To determine if and how islet cell transcriptomes cluster, we
completed unsupervised dimensionality reduction via t-distribu-
ted stochastic neighbor embedding (t-SNE) on 380 ND single-cell
samples (excluding “multiple” labeled samples). t-SNE assembled
single-cell transcriptomes into discrete clusters based upon 1824
highly expressed genes (see Methods; Supplemental Table S4);
GMM-based marker gene analysis revealed that each cluster corre-
sponded to a distinct endocrine and exocrine cell type (Fig. 3A;
Supplemental Fig. S6). Unsupervised hierarchical clustering also
grouped single-cell transcriptomes into discrete cell types (Fig.
3B). Despite being obtained from different individuals, 161/168
beta, 128/138 alpha, 15/16 delta, and 12/12 PP/gamma cell tran-
scriptomes clustered into the same dendrogrambranches, strongly
suggesting that cell type encodes the greatest variation in the data.
Exocrine cells and those expressing none of the specified marker
genes (“none”) clustered separately from the endocrine cell types.
Importantly, this clustering was driven by neither sequencing
depth (Supplemental Fig. S7B) nor expression of classic marker
genes (INS, GCG, SST, PPY, GHRL, COL1A1, PRSS1, and KRT19), as
cells continued to cluster into discrete cell types even when all
marker genes were removed from the expression data sets
(Supplemental Figs. S7C, S8). Recent studies have reported hetero-
geneity among beta cells. Specifically, Dorrell et al. characterized
four subpopulations of human beta cells based on differing
ST8SIA1 and CD9 expression (Dorrell et al. 2016). Similarly, Bader
et al. 2016 distinguished two populations of proliferating (Fltp+)
and mature (Fltp−) mouse beta cells. We did not find evidence of
betacell subpopulations (Supplemental Fig. S9),nordidwe identify
numerous proliferating cells (Supplemental Table S5). T2D single-
cell transcriptomes (n = 258) also demonstrated clear clustering
by cell type in unsupervised analyses (Supplemental Figs. S10–
S14) based on 1908 highly expressed genes (Supplemental Table
S4). Thus, each endocrine and exocrine pancreatic cell type
exhibits a complex characteristic expression signature that unique-
ly identifies it.

Differential expression analyses reveal islet cell-type–specific

transcriptional signatures

To identify gene signatures distinguishing each islet cell type, we
completed a series of pairwise differential expression analyses
(Supplemental Table S6) between each cell type (see Methods).
After intersecting the results from each pairwise comparison, we
identified a conservative collection of 154 islet endocrine cell-
type “signature” genes (61 beta, 51 alpha, 17 delta, 25 gamma),
as well as 202 exocrine genes (109 stellate, 31 acinar, 62 ductal)
at 5% false-discovery rate (FDR) (Fig. 3C; Supplemental Table S7).
Two genes exhibited overlap between the endocrine and exocrine
signature lists: FAP (alpha and stellate cell overlap) and TNS1 (beta
and stellate cell overlap). Gene set enrichment analysis (GSEA)
identified enrichment (FDR-adjusted P-value <0.05) of insulin
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signaling, oxidative phosphorylation, maturity-onset diabetes
of the young (MODY), and glycolysis/gluconeogenesis KEGG
pathways in beta cells relative to the other endocrine cells
(Supplemental Table S8).

Signature genes included previously reported beta-specific
genes likeNKX6-1,DLK1, and ADCYAP1 (Fig. 3C, right) and alpha
cell–specific genes like IRX2, LOXL4, and DPP4, a cell surface re-
ceptor and diabetes drug target (Dorrell et al. 2011a; Bramswig
et al. 2013; Nica et al. 2013; Blodgett et al. 2015). Among delta

cell signature genes, we detected exclusive expression of HHEX,
a transcription factor reported to govern delta cell identity and
function and linked to T2D GWAS (Zhang et al. 2014). Delta cells
also specifically expressed BCHE, which encodes butyrylcholines-
terase. BCHE catalyzes the breakdown of acetylcholine and ghre-
lin (Chen et al. 2015), thus providing a mechanism for delta
cells to exert local inhibition of islet-influencing endocrine sig-
nals. PP/gamma cell–specific transcriptomes included CTD-
2008P7.8, a lincRNA of unknown function; CNTNAP5, a member

Figure 2. Cell-type classification based on marker gene expression. (A) Density plots demonstrating endocrine and exocrine marker gene expression
across all single cells. (B) Schematic of the Gaussian mixture model method applied to assign cell-type identity based on marker gene expression. (C )
UCSC Genome Browser views of representative single-cell expression profiles of INS, GCG, SST, PPY, and GHRL genes encoding beta, alpha, delta, PP/gam-
ma, and epsilon cell hormones of the endocrine pancreas, respectively, and marker genes for stellate (COL1A1), acinar (PRSS1), and ductal (KRT19) cells of
the exocrine pancreas. Line colors indicate putative beta (red), alpha (blue), delta (green), PP/gamma (purple), epsilon (orange), stellate (black), acinar
(dark gray), and ductal cells (light gray). (PP) pancreatic polypeptide; (CPM) counts per million.
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of the neurexin family of cell adhesionmolecules; and ID4, which
encodes an inhibitor of DNA-binding protein. In addition to
DPP4, we detected 30 islet signature genes whose proteins
SWISSPROT predicts to localize to the cell surface (Supplemental
Table S9). DPP4 antibodies have recently been used to isolate
purer alpha cell populations from islets (Arda et al. 2016). Thus,
antibodies against the other candidate cell-type–specific surface
markers we have identified may be useful to purify other islet
cell types.

Single-cell profiling identifies unexpected overlap in expression

between minor and major islet cell types

Cell sorting and enrichmentmethods such as fluorescence-activat-
ed cell sorting (FACS) have been used to identify characteristic al-
pha and beta cell genes (Dorrell et al. 2011a,b; Bramswig et al.
2013; Nica et al. 2013; Blodgett et al. 2015). However, expression
of SST or PPY in the reported alpha and beta cell gene sets suggests
the presence of the less abundant delta and PP/gamma islet cell
types in the enriched cell preparations. To distinguish genes exhib-
iting alpha- and beta-specific gene expression from those ex-
pressed also in delta and PP/gamma cells, we investigated the
expression of previously reported alpha- and beta-specific genes
(Supplemental Table S10; Supplemental Fig. S15) in our ND endo-
crine single-cell transcriptomes. Only 115/1683 previously report-
ed beta-specific genes were expressed greater than fourfold higher
in beta cells relative to the other endocrine cells (FDR < 0.05; one-
way ANOVA followed by Tukey’s honest significant difference
[THSD]) (Fig. 3D). Similarly, 75/1853 reported alpha-specific genes
were alpha cell enriched (Fig. 3E). Several genes previously report-
ed to be enriched in the major islet cell types, such as MAFA,
SLC2A2, SIX3, and DLK1 in beta cells and IRX2, DPP4, and
ADORA2A in alpha cells, were confirmed to be signature genes.
Surprisingly, we found that 37 and 33 reported beta- and alpha-
specific genes were also expressed in delta and PP/gamma cells, re-
spectively (Fig. 3F; Supplemental Table S10). Notable examples in-
cluded beta and delta cell expression of the congenital
hyperinsulinemia (CHI) gene HADH and alpha and PP/gamma
cell expression of the ARX transcription factor (Liu et al. 2011).
HADH is typically associated with beta cell expression and, when
mutated, leads to insulin hypersecretion and CHI (Kapoor et al.
2010; Pepin et al. 2010); these data implicate the delta cell in the
molecular genetics of CHI. Misexpression of ARX has been shown
to convey both alpha and PP/gamma cell features to cells

(Collombat et al. 2007), suggesting that its expression in each
cell type is important for identity and function.

Genes underpinning metabolic function, regulation of energy

homeostasis, and satiety are specific to distinct islet cell types

Perturbations in genes involved in glucose sensing and proper
maintenance of blood glucose levels contribute to T2Dpathophys-
iology (Schuit et al. 2001; MacDonald et al. 2005). Beta cells regu-
late blood glucose through the secretion of insulin and are thus
exquisitely sensitive to blood glucose levels. Glucose-stimulated
insulin secretion (GSIS) is linked to universal basic pathways of cel-
lular metabolism in beta cells. To gain insight into beta cell-type–
specific transcriptomic features associated with GSIS, namely, glu-
cose uptake and glycolysis, we examined the expression of relevant
genes in our islet single-cell transcriptomes (Fig. 4A).

GSIS pathway genes associated with glucose sensing and up-
take displayed highly beta cell–specific expression, including
SLC2A2, which encodes the glucose transporter GLUT2; G6PC2,
which encodes a subunit of glucose-6-phosphatase; and PFKFB2,
which encodes an enzyme involved in regulation of glycolysis
(Fig. 4A; Chen et al. 2008; Muller et al. 2015). While expressed in
all cell types, the enzyme, ALDOA1, immediately downstream
from PFK1 and associated with the glycerol phosphate (GP) shut-
tle, is enriched in beta cells, perhaps reflecting an additional point
of GSIS control. Protein-coding genes for five subsequent glycolyt-
ic enzymatic steps from glyceraldehyde-3-phosphate to pyruvate
were not significantly differentially expressed between cell types.
Beta cells are known to be limited in their ability to produce lactate
from pyruvate (Fridlyand and Philipson 2010); this is reflected by
high LDHB/LDHA ratios that favor the lactate to pyruvate flux in
beta cells.

The glycerol-3-phosphate shuttle allows NAD+ regeneration
in the cytosol to sustain glycolytic flux essential for GSIS.
Cytoplasmic NAD+ generation has been shown to be essential
for GSIS (Eto et al. 1999). Both components of the glycerol-3-phos-
phate shuttle, cytoplasmic GPD1 and mitochondrial GPD2, were
expressed in beta cells, with the former representing a beta cell sig-
nature gene (Fig. 4A). Additionally, we identified themitochondri-
al solute transporter SLC25A34 as beta cell specific. While its
transport specificities have yet to be determined, the closest yeast
ortholog of SLC25A34, Oac1p/YKL120w (Palmieri et al. 1999;
Marobbio et al. 2008), is thought to import oxaloacetate into the
mitochondria. This is particularly intriguing considering our
data and others (MacDonald et al. 2011) show the complete ab-
sence of pyruvate carboxylase (PC) expression in humanbeta cells,
despite the essential role PC is known to play in rodent GSIS
(Sugden and Holness 2011) through mitochondrial production
of oxaloacetate. We hypothesize that SLC25A34 may provide an
alternate, cytoplasmic source for mitochondrial oxaloacetate in
the human beta cell.

Single-cell profiling also allowed us to interrogate the tran-
scriptional repertoire of less abundant delta and PP/gamma cell
types, which have been elusive in both whole islet and sorted islet
studies. While it is difficult to determine epsilon cell expression
signatures with one ghrelin-positive cell, our ND data set includes
16 delta cells and 12 PP/gamma cells. Among the top 100 differen-
tially expressed (FDR < 5%) genes in delta versus other islet endo-
crine cells are receptors for the appetite-regulating hormones
leptin (LEPR) and ghrelin (GHSR), the growth factor neuregulin 4
(ERBB4), and the neurotransmitter dopamine (DRD2) (Fig. 4B).
GHSR has recently been shown to be specifically expressed and

Table 1. Number of profiled cells for each pancreatic cell type based
on marker gene expression

Putative cell
type (marker
gene)

Cell ontology
accession no.

Nondiabetic
(ND)

Type 2
diabetic
(T2D)

Alpha (GCG) CL:0000171 138 (23.47%) 101 (25.9%)
Beta (INS) CL:0000169 168 (28.57%) 96 (24.62%)
Delta (SST) CL:0000173 16 (2.72%) 9 (2.31%)
PP/gamma (PPY) CL:0002275 12 (2.04%) 6 (1.54%)
Epsilon (GHRL) CL:0005019 1 (0.17%) 0
Stellate (COL1A1) CL:0002410 9 (1.53%) 10 (2.56%)
Acinar (PRSS1) CL:0002064 15 (2.55%) 9 (2.31%)
Ductal (KRT19) CL:0002079 11 (1.87%) 16 (4.1%)
Multiple — 208 (35.37%) 132

(33.85%)
None (other) — 10 (1.7%) 11 (2.82%)
Total 588 390
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functional in both human andmouse delta cells, reducing GSIS in
human and mouse beta cells when induced (DiGruccio et al.
2016). LEPR, DRD2, and ERBB4 expression is specific to human
delta cells. In situ analyses (ViewRNA, Affymetrix) detected coex-
pression of LEPR in 79/102 (77%) of SST-expressing cells (Fig.
4D, arrowheads) in ND islets, confirming the delta cell–specific ex-
pression detected in Fluidigm C1 profiling. Thus, our data suggest

intriguing roles for islet delta cells in the integration of metabolic
signals via leptin, ghrelin, and dopamine signaling pathways.

PP/gamma, alongwith epsilon cells, are among the least stud-
ied islet cell types due to their scarcity in islets. Recent studies show
that PP/gamma cells are crucial regulators of energy homeostasis
(Yulyaningsih et al. 2014; Khandekar et al. 2015). In response to
food intake, these cells secrete the anorexigenic hormone PPY to

Figure 3. Statistical analysis of nondiabetic single-cell transcriptomes identifies cell-type–specific clusters and defines the signature genes of each islet cell
type. (A) Unsupervised analysis of single-cell transcriptomes using t-distributed stochastic neighbor embedding (t-SNE) demonstrates grouping of single
islet cell transcriptomes into the major constituent cell types. Respective cell labels and coloring were added after unsupervised analyses. (B) Unsupervised
hierarchical clustering illustrates relationships of transcriptome profiles between respective endocrine and exocrine cells. (C) Supervised differential expres-
sion analysis of cell types determines cell-specific (signature) genes across all cells (see Methods). Values represent log2(CPM) expression after mean-cen-
tering and scaling between −1 and 1. Violin plots of selected signature gene expression are displayed to the right of the heatmap. (D,E) Bar plots depicting
the numbers of previously reported beta-specific (D) and alpha-specific (E) genes (Dorrell et al. 2011b; Bramswig et al. 2013; Nica et al. 2013; Blodgett et al.
2015) confirmed to be expressed in each islet cell type after ANOVA and Tukey’s honest significant difference (THSD) post-hoc analysis (Methods). (F )
Several beta-specific genes demonstrate similar expression levels in delta cells, and alpha-specific genes demonstrate similar expression in PP/gamma cells.
Values represent average log2(CPM) expression after mean-centering and scaling between −1 and 1. (β) Beta; (α) alpha; (δ) delta; (γ) PP/gamma cells.

Lawlor et al.

6 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on February 20, 2017 - Published by genome.cshlp.orgDownloaded from 

34

http://genome.cshlp.org/
http://www.cshlpress.com


facilitate vagal stimulation of neuropeptide Y receptors in the hy-
pothalamus and induce satiety (Khandekar et al. 2015). Our data
suggest interesting parallels in expression between PP/gamma cells
and serotonergic neurons, a group of neurons that influence vari-
ous cognitive and physiological processes including anxiety,

mood, sleep, and satiety.We report expression of FEV, a serotoner-
gic transcription factor and necessary driver of neuronal matura-
tion previously reported in mouse beta cells (Ohta et al. 2011),
in PP/gamma cells (average log2CPM of 2.172). Interestingly,
FEV has also been implicated in beta cell differentiation, and Fev

Figure 4. Cell-type–specific expression of metabolic, signaling, and diabetes trait genes. (A) Beta cell–specific expression of different isoforms of glyco-
lytic and metabolic intermediate shuttles. Genes marked with an asterisk represent beta cell signature genes. (B) Delta cell–specific expression of neuroac-
tive-ligand receptors and transcription factors. (I) Bulk intact islets; (β) beta; (α) alpha; (δ) delta; (γ) PP/gamma; (A) acinar; (D) ductal; (S) stellate cells. (C)
Monogenic diabetes–associated genes and their cell-type–specific expression in islets. Violin plots show the log2(CPM) expression of each gene across cell
types. (CHI) congenital hyperinsulinism; (MODY) maturity onset diabetes of the young; (TNDM) transient neonatal diabetes mellitus; (PNDM) permanent
neonatal diabetes mellitus. (D) RNA in situ hybridization (ViewRNA, Affymetrix) of OCT-embedded islet sections from donor P3 labeling SST (red), LEPR
(green), and nuclei (DAPI; blue). White arrowheads indicate SST+/LEPR+ cells. ViewRNA of OCT-embedded islet sections from donor P4 to detect the fol-
lowing: (E) INS (red),HADH (green), and nuclei (DAPI; blue) and (F) SST (red),HADH (green), and nuclei (DAPI; blue). White arrowheads highlight examples
of HADH+/INS− (E) and HADH+/SST+ (F) cells. Hollow arrowheads highlight HADH+/INS+ (E) and HADH+/SST− (F ) cells. In D–F, solid horizontal white lines
indicate scale bars of 20 μm. In E and F, white dashed lines highlight a cell either co-expressing (E) INS/HADH or (F) SST/HADH. White squares in the bottom
left of E and bottom right of F indicate magnified images of the cells highlighted in respective dashed white boxes.
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−/− mice exhibit insulin production, insulin secretion, and glu-
cose clearance defects (Ohta et al. 2011). Other related signature
genes in PP/gamma cells includeTPH1, encoding a tryptophanhy-
droxylase essential for the initial catalysis of serotonin, and
SLC6A4, a serotonin reuptake transporter. Serotonin colocalizes
with insulin in beta cells and promotes GSIS (Paulmann et al.
2009).Mice lackingTPH1 are diabetic and exhibit impaired insulin
secretion due to a lack of pancreatic serotonin (Paulmann et al.
2009). Elevated FEV, TPH1, and SLC6A4 expression suggests PP/
gamma cells share a suite of characteristic genes with serotonergic
neurons that, in the pancreas, integrate central and peripheral
hunger and satiety cues. We also observed high PP/gamma expres-
sion of muscarinic acetylcholine receptor M3, CHRM3, which
stimulates exocrine pancreatic amylase (Gautam et al. 2005), insu-
lin secretion (Kong and Tobin 2011; Molina et al. 2014), and
smooth muscle contraction and gastric emptying (Eglen et al.
1994). These data implicate the less abundant delta and PP/gamma
cell types as critical for islet function via the integration of systemic
cues and warrant further studies to elucidate the function and
health of these cells in normal and diabetogenic conditions.

Single-cell transcriptomes link rare and common diabetes genetic

risk genes to islet cell types

We next sought to understand the cell type(s) involved in rare
forms of diabetes, including transient/permanent neonatal diabe-
tes (T/PNDM), CHI and MODY, as well as more common forms of
islet dysfunction and diabetes (T1D/T2D).Monogenic diabetic dis-
orders, including CHI, MODY, and neonatal diabetes, are charac-
terized by mutations in a single gene, often resulting in beta cell
dysfunction and death (Schwitzgebel 2014). Five monogenic dia-
betes risk genes (Supplemental Table S11; Hoffmann and
Spengler 2012; Senniappan et al. 2013; Schwitzgebel 2014), were
enriched in beta cells (i.e., greater than fourfold change in expres-
sion in specific islet cell type relative to other endocrine cells), in-
cluding glucose transporter SLC2A2 (data not shown), beta cell
maturation transcription factor PDX1, and the sulfonylurea drug
target ABCC8 (Fig. 4C). PDX1 expression has been reported in hu-
man (Li et al. 2016) and mouse (DiGruccio et al. 2016) beta and
delta cells. Despite the modest number of delta cells sampled,
our data also suggest moderate PDX1 expression in delta cells
(four of 16 delta cells with expression ≥16 CPM). Robust expres-
sion of HADH in both beta and delta cells (Fig. 4C) was confirmed
by in situ (View RNA) analyses (Fig. 4E,F). Approximately 386/457
cells (84%) in HADH and INS labeled sections coexpressed both
markers (shown in Fig. 4E). Adjacent SST/HADH colabeling yielded
an approximately equal proportion (n = 255/306; 83%) of SST-neg-
ative/HADH-positive cells. Finally, 43/457 (9%) cells were INS neg-
ative/HADH positive, and 41/306 (13%) cells coexpressed SST and
HADH (shown in Fig. 4F) in the respective serial sections. Another
CHI-associated gene, UCP2 (González-Barroso et al. 2008;
Senniappan et al. 2013), which was reported to be highly ex-
pressed in humanbeta cells (Liu et al. 2013) and to suppress insulin
secretion (Krauss et al. 2003), was enriched in delta cells (Fig. 4C).
Delta cell expression of monogenic diabetes genes thus implicate
this cell type in the molecular genetics of rare islet dysfunction
and diabetes disorders, particularly CHI.

We also investigated cell type expression patterns of 536 islet
expression quantitative trait loci (eQTL) target genes (Lyssenko
et al. 2009; Dupuis et al. 2010; Dayeh et al. 2013; Fadista et al.
2014; Kulzer et al. 2014; van de Bunt et al. 2015). The majority
of these genes (n = 309; Supplemental Table S11) were lowly ex-

pressed in both the endocrine islet single-cell transcriptomes and
in the paired bulk islet transcriptomes (Supplemental Fig. S16A).
One hundred fifty-nine additional genes did not exhibit a greater
than or equal to fourfold expression change in any endocrine islet
cell type. Of the remaining 68 eQTL genes, 54, 46, 51, and 43 were
expressed in beta, alpha, delta, and PP/gamma cells, respectively.
Surprisingly, beta and delta cells possessed the highest numbers
of cell-type–specific eQTL genes (Supplemental Table S11).

Genome-wide association studies (GWAS) have identified
more than 100 loci associated with T2D and related quantitative
traits (Mohlke and Boehnke 2015). Because GWAS identify genetic
variants associated with a disease, but not the specific gene(s) af-
fected (Pearson and Manolio 2008; Manolio 2010), we took two
approaches to assess cell-type expression of patterns of putative
GWAS genes. First, we compiled and examined a list of 197 report-
ed putative T1D and T2D GWAS genes (Bakay et al. 2013; Nica
et al. 2013; Fadista et al. 2014; Marroqui et al. 2015; Mohlke and
Boehnke 2015). Of these genes, 37 were expressed in beta, 24 in
alpha, 28 in delta, and 22 in PP/gamma cells (Supplemental
Table S11). Similarly, genes that were cell-type specific were ex-
pressed at higher levels in ND bulk intact islets compared with
those genes without cell-type specificity (Supplemental Fig.
S16B). Ten genes were uniquely expressed in beta cells, including
MEG3, a type 1 diabetes (T1D)–associated lincRNA with reported
expression in mouse beta cells and potential tumor suppressor ac-
tivity (Modali et al. 2015), and IAPP, whose protein product, when
aggregated, possesses cytotoxic properties that may contribute to
beta cell death and dysfunction in T2D (Westermark et al. 2011).
We also identified five putative T2D GWAS genes (including
HHEX) to be uniquely expressed in delta cells. To conduct a
more liberal analysis of putative GWAS genes, we identified all sin-
gle-nucleotide polymorphisms (SNPs) associated with polygenic
diabetes and related traits from the GWAS catalog (https://www.
ebi.ac.uk/gwas/). For each reported SNP associated with T2D,
T1D, fasting insulin, fasting glucose, and proinsulin, we examined
the expression of all genes overlapping within one megabase of
the chromosomal locus and identified 263 genes with cell-type–
specific expression (Supplemental Table S12). Together, our obser-
vations of cell-type–specific expression of eQTL and monogenic
and common (T2D GWAS) diabetes genes both confirm beta
cell–specific expression of multiple diabetes-associated genes
(MEG3, DLK1, SLC2A2, etc.) and implicate other cell types in the
molecular genetic pathogenesis of diabetes. In light of recent stud-
ies (Zhang et al. 2014; DiGruccio et al. 2016) and our data, which
suggest that delta cells may be critical regulators of glucose homeo-
stasis and islet function, this provides a new avenue for investiga-
tion of T2D pathogenesis, as well as potentially new therapeutic
targets and treatment options.

Comparison of T2D and ND single-cell transcriptomes uncovers

cell-type–specific differences not detected in whole islets

Finally, we compared single-cell transcriptome profiles from T2D
and ND donors to identify differentially regulated genes and ob-
tain greater insight into the molecular genetic pathogenesis of di-
abetes. After unsupervised hierarchical clustering (Fig. 5A) and t-
SNE analysis (Supplemental Figs. S17, S18) using 2754 of the
most highly expressed genes (Supplemental Table S4), we observed
that transcriptomes clustered by cell type regardless of disease
state. As previously observed, clustering was not driven by marker
gene expression (Supplemental Figs. S19, S20). For regions of the
dendrogram (Fig. 5A) where samples appeared to cluster by disease
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state, we found that islet donor identity was an underlying factor
that reflected sample subclustering (Supplemental Fig. S21). We
obtained fewer beta cells among the T2D islet cells sampled com-
pared with ND samples (Fig. 5B). However, observed differences
in T2D and ND single-cell proportions did not differ significantly
from expected cell-type proportions (Fig. 5B, χ2 P-value = 0.2733),
and none of the islets from these newly diagnosed T2D individuals
exhibited as significant a decrease as previously reported (Butler

et al. 2003; Cnop et al. 2005; Donath et al. 2005; Prentki and
Nolan 2006).

Recent studies have reported features of beta cell de-differenti-
ation under diabetogenic and stress conditions (Talchai et al. 2012;
Wang et al. 2014; Cinti et al. 2016). However, we did not identify
significant shifts in islet cell populations, increases in number of
hormone-negative “none” cells, or appearances of new or more
abundant populations of cells in T2D islets that clustered distinctly

Figure 5. Single-cell transcriptome analyses identify cell-type–specific expression changes in T2D islets. (A) T2D andND single-cell transcriptomes cluster
together by cell type after unsupervised hierarchical clustering. (B) Number of each ND and T2D cell type classified by marker gene expression as shown in
Figure 2. The numbers of cells expected in each condition based on a χ2 test are indicated in parentheses. (C–E, top) Scatter plots of log2 fold-change (FC)
expression detected between T2D and ND samples from bulk intact RNA-seq (y-axis) and from Fluidigm C1 single-cell RNA-seq (x-axis) from beta cells (left
plot; red), alpha cells (middle plot; blue), and delta cells (right plot; green). (Bottom) Violin plots highlight examples of differentially expressed genes in one
single-cell type. Dashed purple lines represent repressed genes in the respective T2D cell type, while dashed blue lines represent induced genes. (∗) FDR <
0.05, (∗∗) FDR < 0.01, (∗∗∗) FDR < 0.001. (F ) Venn diagram showing the intersections of differentially expressed genes identified between T2D andND tran-
scriptomes at single-cell-type and islet single-cell ensemble resolution. The islet single-cell ensemble represents the pooled collection of beta, alpha, delta,
and PP/gamma single cells.
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from the known islet cell types in this study.Moreover, expression
of reported de-differentiation genes including FOXO1, NANOG,
and POU5F1 (Talchai et al. 2012) did not differ significantly be-
tween T2D and ND islet cell types nor the paired bulk intact islet
preparations (Supplemental Fig. S22). Finally, other de-differentia-
tionmarkers such asNEUROG3 andMYCLwere not detected in our
single-cell or bulk intact islet data. Thus, our analysis did not iden-
tify transcriptional evidence of de-differentiated cells in T2D islets.

Comparison of islet cell-type transcriptomes (e.g., T2D beta
vs. ND beta) did, however, identify 410 genes that were differen-
tially expressed (FDR < 5%) between T2D and ND donors
(Supplemental Table S6) beta, (Fig. 5C, n = 248), alpha (Fig. 5D,
n = 138), and delta cells (Fig. 5E, n = 24). We also identified dif-
ferentially expressed genes in acinar (n = 74), ductal (n = 35), and
stellate (n = 28) exocrine cell types (Supplemental Fig. S23;
Supplemental Table S6). T2D beta cells exhibited a 1.4-fold de-
creased INS expression compared with ND beta cells (Fig. 5C).
STX1A was significantly reduced (log2FC −1.5178) in T2D beta
cells, consistent with reported decreases in STX1A protein levels
in T2D beta cells (Andersson et al. 2012). STX1A combines with
SNAP-25 and VAMP2 to form a tertiary SNARE protein complex
important for insulin secretion in beta cells (Andersson et al.
2012), and STX1A inhibition drastically reduces GSIS and exocyto-
sis (Vikman et al. 2006). Additionally, we detected elevated DLK1
expression in T2D beta cells (log2FC 2.010), which has been impli-
cated in T1D/T2D GWAS (Wallace et al. 2010) and is part of a dys-
regulated locus in T2D islets (Kameswaran et al. 2014). Dlk1−/−

mice exhibit increased glucose sensitivity and insulin secretion
(Abdallah et al. 2015), and high levels of serum DLK1 have been
associated with insulin resistance in both rodents and humans
(Chacón et al. 2008). Immunofluorescence indicates that DLK1
is beta cell specific in human but not mouse islets (Li et al.
2016), and FACS-enriched mouse beta cells show low expression
of Dlk1 in comparison to other sorted islet alpha and delta cells
(DiGruccio et al. 2016), potentially implicating a unique role of
this gene in human T2D progression. These findings suggest that
perturbations in STX1A and DLK1 expression may contribute to
the beta cell dysfunction and impaired insulin secretion that is
commonly observed in T2D pathogenesis.

Decreased beta cell function and mass are hallmarks of T2D
pathophysiology (Cerf 2013; Halban et al. 2014). Our analyses sug-
gest that transcriptional changes in nonbeta cellsmayalso contrib-
ute to T2D pathogenesis. Specifically, we highlight increased
expression of fatty acid translocase gene CD36 (log2FC 2.296), as
well as decreased expression of the guanine deaminase gene,
GDA (log2FC −1.062), in T2D alpha cells. Soluble CD36 is a bio-
marker of T2D (Alkhatatbeh et al. 2013) and diabetic nephropathy
(Shiju et al. 2015) and coordinates activation of the NLRP3 inflam-
masome, leading to proinflammatory cytokine release and re-
duced insulin secretion (Sheedy et al. 2013). Within T2D delta
cell transcriptomes, we note increased LAPTM4B expression
(log2FC 2.871) and drastically reduced RCOR1 expression (log2FC
−10.128). The underlying biological significance of these differen-
tially regulated genes remains unclear and thus requires further in-
vestigation of their roles in nonbeta cell types and T2D pathology.
We also compared the transcriptional differences between
T2D and ND endocrine cells without first segregating them into
islet cell types (334 ND and 212 T2D single-cell profiles).
Approximately 66% of beta cell–specific (n = 165/248), 50% of al-
pha cell–specific (n = 67/138), and >90% of delta–specific (n = 23/
24) changes in gene expression were missed when cell types
were not defined and specifically compared (Fig. 5F). The de-

creased heterogeneity in the transcriptional profiles of cell-type–
specific comparisons provides increased power to detect the tran-
scriptomic differences and argues the importance of single-cell
analysis in understanding the molecular basis of T2D.

Recent islet single-cell studies emerged while this study was
under review. We therefore sought to validate our observed cell-
type–specific differences in T2D islets using these independent
data sets (Wang et al. 2016; Segerstolpe et al. 2016). We found
that 54/77 genes and 32/171 were also significantly up- and
down-regulated, respectively, in T2D beta cells in these studies
(P < 0.05, two-sided Wilcoxon rank-sum test) (Supplemental Fig.
S24A,B; Supplemental Table S13). Notably, DLK1 consistently ex-
hibited approximately fourfold induction in T2D beta cells in each
study (Supplemental Fig. S24C,D) Similarly, 39/60 and 14/78
genes were significantly induced or repressed, respectively, in
T2D alpha cells (Supplemental Fig. S24E,F). This included approx-
imately twofold CD36 induction in each study (Supplemental Fig.
S24G,H). Validation rates for delta cells was notably lower, likely
due to the relatively few cells profiled for comparison. However,
we did note a significant increase (log2FC 1.203) in LAPTM4B in
T2D delta cells from Segerstolpe et al. (2016), consistent with
our data.

Discussion

In this study,we completed transcriptomeprofiling and analysis of
638 single islet cells from ND and T2D individuals. Single-cell
RNA-seq protocols are often limited by their capture efficiency
due to the fact that a limited proportion of each cell’s total tran-
scripts is represented in the final sequencing library (Liu and
Trapnell 2016). Additionally, these approaches have difficulty de-
tecting expression and changes in expression of low abundance
transcripts. Despite these limitations, we observed a strong correla-
tion between the transcriptomes of paired bulk islets and single
cells, indicating these are high-quality and representative data
sets. Based on single-cell transcriptome profiles, we have identified
cells of each endocrine (alpha, beta, delta, PP/gamma, epsilon) and
exocrine (stellate, ductal, acinar) type in the pancreas in an agnos-
tic and data-driven manner.

This approach has defined expression signatures of each cell
type with single-cell precision. Cell-type–specific expression pat-
terns in our data such asMAFA in beta cells and IRX2 in alpha cells
are concordant with and extend those generated on a smaller set of
cells and an independent platform (Li et al. 2016). Notably, our ap-
proach also uncovered important instances of shared expression
between these cell types and the less common delta and PP/gam-
ma islet populations, including genes mutated in CHI (HADH)
and transcription factors regulating cell fate/identity (ARX).
HADH encodes hydroxyacyl-CoA dehydrogenase, an important
enzyme and negative regulator of glutamate dehydrogenase
(GDH) and insulin secretion. Expression of HADH in islets has
been shown to be beta cell specific (Kapoor et al. 2010; Pepin
et al. 2010), and indeed, knockdown of HADH in rat 832/13 beta
cells increases insulin secretion (Pepin et al. 2010). Surprisingly,
our combined transcriptomic analyses and in situ (ViewRNA) val-
idation ofHADH revealed shared expression in beta and delta cells.
These findings suggest delta cell dysfunction, in addition to beta
cell dysfunction, as potential contributing factors to the develop-
ment of monogenic diabetic disorders.

Most importantly, analysis of the delta and PP/gamma islet
cell transcriptomes revealed cell-type–specific expression of multi-
ple genes that suggest important roles for these cells in islet
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physiology and the molecular genetics of islet dysfunction in rare
(e.g., PNDM, TNDM, and MODY) and common (e.g., T2D) forms
of diabetes. The novel transcriptome signatures uncovered for hu-
mandelta andPP/gamma cells includes genes that strongly suggest
important roles for each cell type in sensing and integrating specif-
ic systemic cues to govern islet (dys)function. This clearly warrants
additional work to better understand the regulation and function
of these cells in normal and diabetic states. New cell surface mark-
ers identified for each of these cell types could be used to specifi-
cally enrich and purify these populations for detailed functional
analysis.

Finally, by comparing single-cell transcriptomes from T2D
and ND islets, we were able to study quantitative changes in
cell populations and cell-type–specific expression in T2D patho-
genesis. Although not reaching statistical significance, we did ob-
serve a trend of decreased beta cells in T2D islets versus ND islets.
This difference was not as pronounced as in previous reports, pos-
sibly due to the relatively modest number of cells sampled per in-
dividual. Alternatively, as most of the T2D islet single-cell
transcriptomes came from newly diagnosed individuals, this dif-
ference may also reflect the shorter duration or decreased severity
of T2D in these samples compared with other studies. Previous
studies suggested that beta cell de-differentiation may underlie
beta cell loss in T2D (Talchai et al. 2012; Wang et al. 2014;
Cinti et al. 2016). However, a subsequent study comparing hu-
man islets from 14 T2D and 13 ND individuals did not identify
clear evidence of this phenomenon (Butler et al. 2016).
Similarly, our data do not provide transcriptome-based evidence
of trans-differentiation or de-differentiation phenomena in T2D
islets. We observed neither the appearance of new or distinct sub-
populations among the T2D islet single cells nor significant
changes of reported de-differentiation genes between T2D and
ND cell types (e.g., T2D beta cells vs. ND beta cells), although it
is possible that de-differentiated cells were simply not captured
in our study. Overall, we identify 248, 138, and 24 genes exhib-
iting differential expression in T2D versus ND beta, alpha, and
delta cells, respectively. Consistent with Simpson’s paradox, ap-
proximately half of these genes in each major islet cell type
(64% beta, 45% alpha) and ∼90% of these in the less abundant
delta cells were not detected in whole islet or single-cell islet tran-
scriptomes when they were not stratified by cell type (Simpson
1951; Trapnell 2015). Each of these differentially regulated genes
may represent important new candidate genes in T2D pathogen-
esis and therapeutic targeting.

Methods

Islet acquisition, processing, and dissociation

Islets were procured from ProdoLabs or the Integrated Islet
Distribution Program (IIDP) and shipped in PIM(T) media
(ProdoLabs) overnight on cold packs. Upon arrival, islets were
washed and transferred into PIM(S) media with PIM(G) and PIM
(ABS) supplements according to the manufacturer’s instructions
(ProdoLabs) and incubated at 37°C in a 5% CO2 tissue culture in-
cubator. Twenty-four hours after transfer, approximately 500 islet
equivalents (IEq) were aliquoted and centrifuged at 180g for 3 min
at room temperature (RT). One aliquot (100 IEq) was immediately
flash frozen (Fig. 1A, baseline), one (200 IEq) was resuspended in 1
mL Prodo-media (Fig. 1A, intact), and one (200 IEq) was resus-
pended in 1 mL Accutase (Innovative Cell Technologies) (Fig.
1A, dissociated and single cell) and incubated for 10 min in a 37°
C water bath, with pipetting every 2 min. Accutase-dissociated

cells were filtered through a prewet cell strainer (BD) to collect sin-
gle cells, rinsed with 9 mL prewarmed CMRL + 10%FBS media to
stop the reaction, and centrifuged at 180g for 3 min at RT.
Dissociated cells were resuspended in 300 µL CMRL + 10%FBSme-
dia. Cell size, number, and viabilitywere assessed usingCountess II
FL (Thermo Fisher Scientific), and the cell suspension was diluted
to a final concentration of 300 cells/µL. Total processing and han-
dling time for each islet was ≤60 min.

Single-cell processing on the C1 single-cell Autoprep system

After counting, cells were diluted to a final concentration range of
250–400 cells/μL and 5 µL loaded onto each C1 integrated fluidic
circuit (IFC; 10- to 17-μm chip) for cell capture on the C1 single-
cell Autoprep system. For each islet preparation, up to two micro-
fluidic chips were used. After capture, cells were imaged within
each capture nest with an EVOS FL auto microscope (Life
Technologies). IFCs were subsequently loaded with additional re-
agents for subsequent cell lysis; SMARTer v1- based (Clontech),
olio-(dT)-primed reverse transcription; template switching for sec-
ond-strand priming; and amplification of cDNA on the C1 System.
Qualitative and quantitative analysis of all single-cell cDNA prod-
ucts was performed on a 96 capillary fragment analyzer (Advanced
Analytical). Only cell singlets, as determined by imaging, with ad-
equate cDNA yield and quality were processed for subsequent se-
quencing. Fragmentation and tagmentation of cDNA was done
with Nextera XT reagent (Illumina) using dual indices to prepare
single-cell multiplexed libraries.

Bulk-cell RNA-seq

Bulk cells were pelleted and RNA purified using the PicoPure RNA
isolation kit (Life Technologies). All RNA-seq libraries from bulk-
sample RNAwere generated with the same SMARTer v1 chemistry
(Clontech) as for the C1 single-cell data largely following theman-
ufacturer’s instructions. Unlike the C1 workflow, after first-strand
DNA synthesis, cDNAwas purified using Agencourt AMPure beads
(Beckman Coulter). cDNAwas subsequently amplified through 12
PCR cycles. The cDNA yield and fragment size were measured on a
2100 Bioanalyzer (Agilent). For sequencing library preparation,
amplified cDNA was sheared using a Covaris LE220 system to ob-
tain fragments of ∼200 bp. The fragmented cDNA was prepared
for sequencing using the NEBNext DNA library prep kit for
Illumina sequencing (New England Biolabs).

Sequencing, read mapping, and quality control

All sequencing was performed on a NextSeq500 (Illumina) using
the 75-cycle high-output chip. RNA-seq reads were subjected to
quality control using custom scripts developed at the computa-
tional sciences group at The Jackson Laboratory. Briefly, reads
with >30% of bases with quality scores less than 30 were removed
from the analysis, and samples with >50% of the low-quality reads
were removed from the cohort. Trimmed readsweremapped to hu-
man transcriptome (GRCh37, Ensembl v70) using Bowtie 2
(Langmead and Salzberg 2012), and expression levels of all genes
were estimated using RSEM (Li and Dewey 2011). Transcript per
million (TPM) values as defined by RSEM were added a value of
one prior to log

2
transformation to avoid zeros. GRCh37was select-

ed for mapping to facilitate integration and comparative analyses
with existing islet data sets (e.g., Parker et al. 2013; Fadista et al.
2014; van de Bunt et al. 2015) and ENCODE and NIH Roadmap
data by members of the islet biology, diabetes, and functional ge-
nomics communities. The observation of expected “positive con-
trol” genes for each cell type strongly suggested that mapping to
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GRCh37 instead of GRCh38 did not mask or alter any important
conclusions that could be drawn from the data.

Single-cell sample processing and quality filtering

We used 26,616 protein-coding genes and lincRNAs from the
GRCh37, Ensembl v70 build in our study. Genes with expression
five or more TPMs in a sample were defined as expressed.
Seventy-two single-cell samples that expressed fewer than 3500
genes according to these criteria were removed from downstream
analysis.

Islet cell type classification

GMM of islet marker genes was performed on a per gene basis us-
ing the R-packagemclust_5.2 (Scrucca et al. 2016). Each single-cell
sample was classified as a specific pancreatic cell type if and only if
a single gene from the selected marker gene list—INS (beta), GCG
(alpha), SST (delta), PPY (PP/gamma), KRT19 (ductal), PRSS1 (aci-
nar), and COL1A1 (stellate)—was expressed in the sample and
none of the other marker genes were expressed. Cells expressing
no marker genes were labeled as “none,” and those expressing
>1 marker gene were labeled as “multiple.” Fluidigm released a
white paper report detailing the potential for single cells to “z-
stack” in up to 30% of capture nests on the medium (10–17 µm)
Fluidigm C1 chip (http://info.fluidigm.com/rs/673-MRG-416/
images/C1-Med-96-IFC-Redesign_wp_101-3328B1_FINAL.pdf).
DAPI staining identified z-stacked islet cell doublets in 10% and
30% of capture nests from two additional C1 single-cell captures.
Because the proportion of “multiple” labeled cells approximately
equaled that of z-stacked doublets, we discarded these cells (n =
340) from subsequent analyses.

Unsupervised dimensionality reduction and hierarchical

clustering

Barnes-Hut variant of t-SNE (van der Maaten 2014) was imple-
mented using the R-package Rtsne_0.10 (https://github.com/
jkrijthe/Rtsne). ND single-cell transcriptomes were reduced to
two dimensions in an unsupervisedmanner using genes with log2-
CPM values greater than 10.5 in at least one sample. Similar anal-
yses were repeated using only the T2D single-cell data and the
combined single-cell data. Hierarchical clustering of cell transcrip-
tomes was performed using Euclidean distance, Ward.D2 linkage,
and the same gene selection criteria. Resultant “fan” dendrogram
images were produced using the R-packages dendextend_1.1.8
(Galili 2015) and ape_3.5 (Paradis et al. 2004). Bulk islet transcrip-
tomes were clustered using the same criteria.

Supervised differential gene expression analysis

Differential expression analyses were performed using the
Bioconductor package edgeR_3.14.1 (Robinson et al. 2010).
Gender was used as a blocking factor to account for variability be-
tweenmale and female patient islets. In each comparison, protein-
coding genes and lincRNAswith 20 or fewer counts in at least 20%
of either cell type population being compared or at least a mini-
mum of three cells were used. Differentially expressed genes with
FDR < 5%were regarded as significant results. Endocrine cell signa-
ture geneswere identified by first performing the above differential
expression analysis procedure between each endocrine cell type
(e.g., beta vs. alpha, beta vs. delta, and beta vs. PP/gamma).
Afterward, the intersection of these results was performed to iden-
tify genes exclusively enriched in the cell type. Exocrine cell signa-
ture genes were identified after pairwise comparisons between
each respective exocrine cell type (e.g., acinar vs. stellate, acinar

vs. ductal). Comparisons between T2D and ND single-cell tran-
scriptomes were performed for the same cell types (e.g., T2D beta
cells vs. ND aeta cells) to identify cell-type–specific differences in
gene expression between T2D and ND states.

ANOVA and post-hoc analyses

For each collection of diabetes-associated and eQTL genes exam-
ined, one-way analysis of variance (ANOVA) was used to identify
statistically significant differences (FDR > 5%) in islet cell-type
gene expression. Following this, we performed a post hoc analysis
using a THSD test to determine genes with cell-type–specific ex-
pression patterns (fold change > 4). Genes were classified as
“pan-islet” if they had an average log2(CPM) expression greater
than four in all islet cell types. Genes that were not enriched in a
cell type or pan-islet were classified as “lowly expressed” (average
log2(CPM) < 2 in all cell types), and the remaining genes were clas-
sified as “less than fourfold change.” This same methodology was
used to characterize expression of the previously reported alpha-
and beta-specific genes from Dorrell et al. (2011b), Bramswig
et al. (2013), Nica et al. (2013), and Blodgett et al. (2015). Similar
methods were used to characterize expression patterns of genes
nearby diabetes-related GWAS SNPs (downloaded from the
GWAS Catalog, https://www.ebi.ac.uk/gwas/, and available in
Supplemental Table S12). Protein-coding RNAs and lincRNAs
that overlapped within one megabase upstream of and down-
stream from the diabetes-associated SNPs were analyzed.

Gene set enrichment analysis

The Bioconductor package gage_2.22.0, (Luo et al. 2009) was used
with default parameters to identify enrichment (FDR < 5%) of hu-
man Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
ways in each of the ND islet cell transcriptomes. Enriched
pathways were determined by comparing each cell-type transcrip-
tome against the other aggregate islet cell-type transcriptomes
(e.g., beta vs. alpha, delta, and PP/gamma).

RNA in situ hybridization

RNA transcripts were visualized in OCT-embedded pancreatic islet
sections from two ND donors (P3 and P4) using QuantiGene
ViewRNA ISH cell assay kit (catalog no. QVC0001, Affymetrix).
Human INS ViewRNA type 6 probe (Catalog no. VA6-13248-06),
SST ViewRNA type 6 probe (catalog no. VA6-17244-06), LEPR
ViewRNA type 1 probe (catalog no. VA1-15221-06), and HADH
ViewRNA type 1 probe (catalog no. VA1-12106-06) were purchased
fromAffymetrix (Santa Clara). The assay was performed according
to the cell-based ViewRNA assay protocol with a 15-min formalde-
hyde fixation and a 10-min protease treatment (dilution factor
1:4000). ViewRNA probes were detected at 550 nm (Cy3) and
650 nm (Cy5) using a Leica TSC SP8 confocal microscope at 63×
magnification.

Islet cell subpopulation analyses

Dorrell et al. 2016 previously defined four beta cell subpopulations
with differing expression of 59 genes. With this gene set, we at-
tempted to validate the presence of these four subpopulations
via unsupervised t-SNE and hierarchical clustering of all ND beta
cell transcriptomes (n = 168). Similarly, Bader et al. (2016) charac-
terized proliferative (Fltp+/FVR+) and mature (Fltp−/FVR−) mouse
beta cells that showed differential expression of 996 transcripts.
By using the Mouse Genome Informatics (MGI; http://www.
informatics.jax.org) database, these 996 transcripts corresponded
to 691 human orthologs that were detected in our data set. Beta
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cell transcriptomeswere clustered using these orthologs to attempt
to identify mature and proliferating subpopulations. Finally, we
used the functions available in scran_1.04 (http://bioconductor.
org/packages/release/bioc/html/scran.html) to computationally
assign single-cell samples into cell cycle phases (G1, G2/M, or S
phase) and investigate whether our data set contained proliferat-
ing islet cells.

Data access

Raw sequence data from this study have been submitted to the da-
tabases of NCBI Sequence Read Archive (SRA; http://www.ncbi.
nlm.nih.gov/sra) under accession number SRP075970 and
BioProject (http://www.ncbi.nlm.nih.gov/bioproject/) under ac-
cession number PRJNA323853. Processed data sets from this
study have been submitted to Gene Expression Omnibus (GEO;
http://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE86473.UCSCGenomeBrowser tracks of aggregateND islet sin-
gle-cell-type transcriptomes are available at http://genome.ucsc.
edu/ and may be accessed with the user name “lawlorn” and ses-
sion name “Islet_Single_Cell_Type_Transcriptomes.” The source
code used to produce the figures and tables in this paper is avail-
able in the Supplemental_Methods_Source_Code folder as sug-
gested by Hoffman (2016).
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CellView: Interactive exploration of high dimensional single cell RNA-seq data 
 
Mohan T. Bolisetty1, Michael L. Stitzel1,2,3 & Paul Robson1,2,3 

 
 

Advances in high-throughput single cell transcriptomics technologies have revolutionized the 

study of complex tissues. It is now possible to measure gene expression across thousands of 

individual cells to define cell types and states. While powerful computational and statistical 

frameworks are emerging to analyze these complex datasets, a gap exists between this data and 

a biologist’s insight. The CellView web application fills this gap by providing easy and intuitive 

exploration of single cell transcriptome data. 

 

Recent technological advances in single cell capture and nano-scale reactions have led to a major 

revolution in single cell transcriptomics1,2,3. Single cell datasets are analyzed using computational and 

statistical frameworks that enable feature (gene) selection, dimensionality reduction, clustering and 

differential gene expression. Multiple software packages exist that allow researchers well versed in 

computational analysis to perform this analysis4–6. However, identifying the exact parameters required for 

cell type identification is an iterative process greatly improved when informed by biology. In addition, 

interactive exploration of single cell datasets incorporating a biologist’s knowledge greatly improves data 

interpretation, yet often such experts do not have big data handling skills. 

 

Advances in web application frameworks and visualization methods for dense datasets facilitate the 

development of interactive applications to allow easy and intuitive exploration of single cell data. Here, 

we introduce an R Shiny7 web application, CellView, that allows knowledge-based and hypothesis-driven 

exploration of processed single cell transcriptomic data. The input into CellView is an R dataset (.Rds) file 
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with three pre-computed data frames containing expression, clustering, and gene symbol information. 

This file is agnostic of upstream computational approaches providing flexibility in algorithms used to 

calculate these data frames. This .Rds file can be shared with the end user, eliminating the need for 

hosting datasets, thereby decreasing the size of a virtual machine or cloud instance required to host and 

use CellView. Multiple tabs allow for easy access to the data and visualization of gene expression across 

and within clusters, aiding cell type identification. 

 

To illustrate the utility and power of CellView, we generated and analyzed single cell transcriptome data 

from peripheral blood mononuclear cells (PBMCs) using the 10X Genomics Chromium8. As defined by 

the CellRanger8 pipeline, this data consisted of 6,554 single cells sequenced to 90.1% saturation with, on 

average, 824 genes and 2,077 molecules detected per cell. Dimensionality reduction using tSNE9 was 

applied to genes selected by normalized dispersion, and with clustering by DBSCAN10. CellView 

automatically determines cluster numbers, updates the user interface, and renders a 3D scatter plot 

displaying cells clustered in tSNE space (Fig 1b) from the uploaded .rds file.  

 

The ‘Explore’ tab provides cluster-centric exploration through three panel views. Panel 1 displays a 3D 

plot of a chosen gene’s expression across all cells. Panel 2 displays a 2D plot of the same gene’s 

expression across all cells in a single cluster, which users can select via drop-down list. Within Panel 2 

users can download a .csv file of a gene-cell expression matrix by selecting cells with a square brush 

stroke. This provides convenient access to all genes expressed in a subset of cells. Panel 3 displays 

violin plots of the chosen gene’s cluster-specific expression and includes a total cell count for each 

cluster. CD79A (Fig 1c), a marker of B-cells, and CD3D, a marker of T-cells (Fig 1d), provide 

representative views of the ‘Explore’ tab. 

 

The ‘Co-expression’ tab enables the generation of heatmaps to visualize expression of multiple genes 

either across all clusters, in the ‘AllClusters’ sub-menu, or on selected cells within a cluster, in the 
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‘Selected cells’ sub-menu (Fig 2a). The number of genes analyzed is only limited by legibility of the gene 

symbols in the resulting heatmap. This feature facilitates the use of known markers to empirically 

determine cell (sub)cluster identity. 

 

The identification of doublets in single cell transcriptome data remains computationally challenging. The 

interactive nature of CellView aids in cell doublet identification. In the PBMC data, ‘Subcluster-analysis’ 

reveals a mixture of lymphoid and myeloid gene expression within cluster 7 suggesting this cluster 

consists of doublets. Cluster 7 represents 2.3% of all cells in this data set, reflecting the number of 

expected doublets for the quantity of cells processed in this experiment. Thus, CellView can be utilized 

as a tool to pre-process of single cell data and remove doublets prior to final visualization. 

 

The ‘Subcluster-analysis’ tab also provides a powerful tool to identify different cell types within clusters 

(where trade-offs between sensitivity and specificity in the chosen clustering algorithm may be insufficient 

to identify unique clusters) or a continuum of states within a cell type. For example, blood monocytes 

span a continuum of classical, intermediate, and non-classical subtypes in flow cytometry analysis of cell 

surface markers CD14 and CD1611. Two populations of cells within a cluster can be selected by square 

brush strokes for differential gene expression analyses (using a likelihood test) to identify biologically 

informative markers. For example, monocytes occupying cluster 4 in the PBMC data appear to contain 

two lobes (Fig.2b). Differential expression between these two lobes using the ‘Subcluster-analysis’ tool 

identified CD16/FCGR3A as the most differentially expressed gene marking the smaller lobe. This lobe 

also contained higher expression of MHC class II genes, an additional feature of non-classical blood 

monocytes. CD14 is among the top 10 up-regulated genes in the large lobe, which include other classical 

blood monocyte markers (e.g. S100A8, S100A9, S100A12). Thus, this blood monocyte continuum 

defined by two cell surface molecules is detected by this transcriptome cytometry approach and 

represented by 837 parameters (i.e. genes) per cell. CellView data visualization may enable 

immunologists to explore further underlying biology within the blood monocyte compartment, such as 
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investigating a subset of cells within the intermediate sub-cluster expressing C1QA, C1QB, and C1QC, 

markers of macrophage in tissue.  

 

Dendritic cells (DCs) occupy clusters 6 and 8 in the PBMC data. Cluster 6 represents plasmacytoid DCs, 

expressing CLEC4C/CD303, CD68, IL3RA/CD123 and LILRA4/CD85g. Myeloid DCs comprise cluster 8. 

CellView’s ‘Subcluster-analysis’ tool enables identification of both the common CD1C+ DC (Fig. 2c; 

113/215 cells expressing CLEC10A, CD1C) and less adundant CD141+ DCs (Fig. 2d; 12/215 cells 

expressing CLEC9A, IRF8). An additional layer of data we include in our .rds files are the genes and 

unique molecular identifiers (UMIs) detected per cell; this can enable identification of cell type biological 

features since RNA abundance (and therefore UMI count) often correlates with cell size12. Notably, non-

classical blood monocytes and myeloid dendritic cells have the greatest numbers of UMIs detected per 

cell, at 3,719 and 5,645 respectively. In contrast, remaining cells have 2,305 UMIs per cell. Myeloid DCs 

are not noticeably larger than other PBMCs and non-classical blood monocytes are somewhat smaller in 

size than classical blood monocytes11 suggesting the RNA content is reflective of an underlying biological 

feature of these cells rather than cell size and may reflect the precursor relationship between non-

classical monocytes and myeloid dendritic cells13.  

 

We next applied CellView to human pancreatic islet single cell transcriptome data we generated on the 

Chromium system from a nondiabetic normal donor, which resulted in 4,806 cells sequenced to 87.1% 

saturation and detecting, on average, 1,848 genes and 7,686 molecules detected per cell. Our pipeline 

identified eight distinct clusters (Fig 1e). Using CellView’s ‘AllClusters’, and marker genes we had 

previously used to cell type in human islets14, we identified endocrine alpha, beta, delta, and gamma cell 

clusters and exocrine acinar, ductal, and stellate cell clusters. An 8th cluster represented endothelial cells 

(Fig 1f). Visual inspection of the 3D scatter plot displaying cells in tSNE space indicated two sub-clusters 

within the defined stellate cell cloud. The ‘Sub-cluster’ tool revealed, in addition to the stellate cells, a 

sub-cluster expressing the pericyte marker RGS515. The close proximity of stellate cells and pericytes are 
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likely a result of their shared mesenchymal origin, as both express COL1A1 and ACTA2. Visual 

inspection of the ductal cell cluster identified a spread of cells suggestive of a continuum of cell states. 

Differential expression between cells at opposing ends of this continuum using the ‘Sub-cluster’ tool 

identified biologically meaningful differences. While all cells expressed KRT19, there was a transition 

from a REG1A/AMBP-positive (Fig 1g) to a TFF1/TFF2/TFF3/FGF19/CAECAM6-positive (Fig 1h) 

population. Whether these represent different spatially localized populations of epithelial cells within the 

pancreatic duct or different states of activation remains to be determined, but further highlights the utility 

of CellView to uncover putative novel biology.  

 

These examples illustrate how CellView provides a powerful complement to current command line 

approaches to cluster and identify cell types in single cell experiments. This intuitive web application 

enables collaboration between biologists and computational analysts and increases the value of each 

single cell dataset. Moreover, the CellView framework provides a useful format to present these data in 

an interactive manner and can be broadly applied to single cell and bulk genomics assays with count 

matrix and cluster information. Until a complete atlas of cell-type transcriptomes has been defined, where 

a reference-based approach may prove more powerful for clustering and cell type identification16, 

CellView provides a useful tool to explore and characterize single cell data. 

 
METHODS 

Single cell RNA-seq - PBMCs were purchased from AllCells, thawed quickly at 37oC and into DMEM 

supplemented with 10% FBS. Cells were quickly spun down at 400g, for 10min. Cells were washed once 

with 1 x PBS supplemented with 0.04% BSA and finally resuspended in 1 x PBS with 0.04% BSA. 

Viability was determined using trypan blue staining and measured on a Countess FL II. Briefly, 12000 

cells were loaded for capture onto the Chromium System using the v2 single cell reagent kit (10X 

Genomics). Following capture and lysis, cDNA was synthesized and amplified (12 cycles) as per 
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manufacturer's protocol (10X Genomics). The amplified cDNA was used to construct an Illumina 

sequencing library and sequenced on a single lane of a HiSeq 4000.  

 

Human islets from one nondiabetic deceased organ donor (UNOS ID ADIW417)	
  were purchased from 

ProdoLabs and processed to obtain a single cell suspension as previously described14. Briefly, islets 

were dissociated using Accutase and filtered through a prewet cell strainer (BD) to collect single cells. 

The single cell suspension was prepared and loaded onto the Chromium System as described above.  

  

FASTQ generation and Alignments - Illumina basecall files (*.bcl) were converted to fastqs using 

cellranger v1.3, which uses bcl2fastq v2.17.1.14. FASTQ files were then aligned to hg19 genome and 

transcriptome using the cellranger v1.3 pipeline, which generates a gene vs cell expression matrix. 

Clustering and marker gene identification - Cells with less than 500 total unique transcripts were removed 

prior to downstream analysis. Genes for clustering were selected based on normalized dispersion 

analysis. Cells were clustered using Barnes Hut t-SNE9 with the 1000 most over dispersed genes and 

clusters identified using DBSCAN (eps = 5.0, minpts=15). Differential gene expression was computed 

using edgeR17 and signature genes defined as genes upregulated 2 fold and FDR < 0.01 in all pairwise 

comparisons.  

 

Datasets and visualization – Access to CellView from: https://www.jax.org/CellOmics 
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Figure 1: CellView enables cell type identification of clusters and discovery of novel cell states in 

PBMC and pancreatic islet datasets. A. CellView’s graphical user interface has 3 different features that 

enables exploration of single cell RNA-seq datasets. B. Upon PBMC data upload, a 3D plot of cells 

clustered in t-SNE space is displayed in ‘overview’. Expression patterns of marker genes such as C. 

CD79A and D. CD3D can be visualized in multiple panels under the ‘Explore’ module assisting in cell 

type identification and to discover further heterogeneity. E. 3D display of cell type clusters identified in 
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human pancreatic islets. F. Analysis using the ‘Co-expression’ module of CellView with marker genes 

aids in the identification the major endocrine cell populations, alpha (cluster 2), beta (cluster 3), gamma 

(cluster 5), delta (cluster 4) along with exocrine cell types like ductal (cluster 1), stellate (cluster 6), acinar 

(cluster 7) and endothelial (cluster 8) cells. Cluster and gene specific views, G. REG1A and H. TPP1 

expression in the ductal cell cluster identifies cells in multiple states. 

 
 
 
 

 

 

Figure 2: Investigating gene expression patterns across and within clusters with CellView 

identifies different cell type populations. A. Analysis using the co-expression module of CellView with 

various immune cell markers identifies the major subpopulations present in PBMCs. B. Exploring gene 

expression of CD14 and CD68 expression identifies a continuum from classical to non-classical 

monocytes that are also characterized by difference in absolute transcript counts (UMI). C. CellView 
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allows for identification of sub-clusters by simple differential gene expression between groups of selected 

cells using a square brush stroke and displays a sortable and searchable table. D. Differential expression 

of two visually resolved populations in the dendritic cell cluster identifies less abundant CD141+ dendritic 

cells expressing the CLEC9A and DNASE1L3 marker genes. 
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